
Formal and Heuns

Decomposition Methods in

,aura

(NASA-CR-4413) FORMAL ANO HEURISTIC SYST!Y

DECgMPOSITIQN METHODS IN _ULTIDISCIPLINARY

SYNTHESIS Ph.D. Thesis, 1991 (F|orida

Univ.) 164 p CSCL 01C
Ht/05

Uric|as

0057126



m 7 --_

r

._±_



NASA Contractor Report 4413

Formal and Heuristic System

Decomposition Methods in

Multidisciplinary Synthesis

Christina L. Bloebaum

University of Florida

Gainesville, Florida

Prepared for

Langley Research Center

under Grant NAG1-1004

National Aeronautics and
Space Administration

Office of Management

Scientific and Technical

Information Program

1991



J

- 7

7.



TABLE OF CONTENTS

LIST OF TABLES ........................................................................... v

LIST OF FIGURES ......................................................................... vi

ACKNOWLEDGEMENTS ................................................................. ix

CHAPTERS

1

2

3

4

6

INTRODUCTION .........................................................

LITERATURE SURVEY .................................................

DESIGN PROBLEM STATEMENT AND METHODOLOGY ......

Design Problem Statement ................................................
Synthesis Methodology ...................................................

SENSITIVITY DETERMINATION .....................................

Sensitivity Analysis Overview ............................................
Finite Difference Approach ...............................................

Analytical Approach .......................................................
Semi-Analytical Approach ................................................
Global Sensitivity Equation Approach ...................................

FORMAL AND HEURISTIC SYSTEM DECOMPOSITION
METHODS .................................................................

1

7

10

10
12

21

21
21
24

25
26

27

Formal Methods ........................................................ 27

Global Sensitivity Equation Method ............................ 27
Concurrent Subspace Optimization Method .................... 31

Heuristic Method: Concurrent Subspace Optimization - Embedded

Expert System Method ........................................... 41

ANALYSIS METHODOLOGY AND MODEL DESCRIPTION .... 46

Global Sensitivity Equation Method ..................................... 46
Design Objective .................................................. 46
Application Model ................................................ 46
Analysis Methodology ............................................ 50

Concurrent Subspace Optimization Method ............................. 56

Design Objective .................................................. 56
Application Model ................................................. 57
Analysis Methodology ............................................ 57

iii PRECEDING PAGE BLA_',,iK NOT FILMED



Concurrent Subspace Optimization - Embedded Expert System
Method ............................................................. 60

Design Objective .................................................. 60
Application Model ................................................ 60
Analysis Methodology ........................................... 62

7

9

APPENDIX A

APPENDIX B

REFERENCES

IMPLEMENTATION OF SOLUTION TECHNIQUES .............. 68

Global Sensitivity Equation Method ..................................... 68
Iterative Solution Technique ..................................... 69
System Conditioning Evaluation ............................... 69
System Normalization Requirements ........................... 70
Solution StandardDeviation Comparisons .................... 71
Constraint Reduction Implementations ......................... 72
Design Variable Allocation Comparison ....................... 73

Concurrent Subspace Optimization Method ............................ 75
Verification Procedure ........................................... 75

Distributed Processing Environment ............................ 76
Approximation Scheme Comparison ........................... 76
Coefficient Effect Evaluation .................................... 76

Variable Move Limit Strategy .................................... 78

Concurrent Subspace Optimization - Embedded Expert System
Method ............................................................. 79

Distributed Processing Environment ............................ 79
Design Variable Allocation ....................................... 80
Optimization Parameter Determination ......................... 81
Variable Move Limit Strategy .................................... 84
Coordination Coefficient Assignment .......................... 87

DISCUSSION OF RESULTS ........................................... 90

Global Sensitivity Equation Method ..................................... 90
Concurrent Subspace Optimization Method ............................. 96

Concurrent Subspace Optimization - Embedded Expert System
Method ............................................................. 109

CONCLUDING REMARKS ............................................. 118

Move Limit Strategy Verification ................................ 122

Knowledge Base for Concurrent Subspace Optimization -
Embedded Expert System Method 136

............................................................................. 150

iv
m



LIST OF TABLES

Table 8.1

Table 8.2

Table 8.3

Table 8.4

Table 8.5

Table A 1

Table A2

Summary of optimization results for GSE application to the aircraft
synthesis problem.

Comparison of initial and final optimization results for ten-bar truss model.

Comparison of optimization results for CSI problem.

Comparison of design variable allocations without (Case A) and with (Case
B) heuristics.

Coefficient and constraint values for first ten optimization cycles.

Material properties and allowable limits for move limit strategy verification
applications.

Initial and first cycle results for 200-bar truss application.

V



Figure 3.1

Figure 3.2a

Figure 3.2b

Figure 3.3

Figure 3.4

Figure 4.1

Figure 5.1

Figure 5.2

Figure 5.3a

Figure 5.3b

Figure 5.4

Figure 5.5

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9

Figure 7.1

LIST OF FIGURES

Generic design methodology for gradient-based optimization.

Hierarchic system decomposition network.

Non-hierarchic system network representing subsystem interactions.

Design synthesis methodology for generic non-hierarchic multidisciplinary
problems.

Effect of limiting design variable movement in two-dimensional design

space.

Design synthesis flowchart using Finite Difference approach.

Subsystem interactions flowchart.

Flowchart for CSSO method.

Distribution of values for responsibility coefficients in subspace three.

Trade-off coefficient values for subspace three.

Organization of tasks in problem-solving system.

Flowchart for heuristics-based CSSO method.

Three view of general aviation aircraft.

Subsystem interactions in multidisciplinary synthesis problem.

Structural finite element model.

Aerodynamic model with panelling.

Subsystem interactions in size/topology problem.

Structural truss model for CSSO verification.

Subsystem interactions in CSI problem.

Cantilever truss with active controls.

Ten-bar truss with static and dynamic loading.

Distributed processing flowchart in CSSO.

vi



Figure 7.2

Figure 7.3

Figure 7.4

Figure 7.5

Figure 8. la

Figure 8.1b

Figure 8.2a

Figure 8.2b

Figure 8.2c

Figure 8.3a

Figure 8.3b

Figure 8.3c

Figure 8.3d

Figure 8.3e

Figure 8.4a

Figure 8.4b

Figure 8.5a

Figure 8.5b

Figure 8.6

Figure 8.7

Figure 8.8

Figure A1

Logic tree for design variable allocation.

Logic tree for optimization parameter determination.

Logic tree for heuristic-based variable move limit strategy.

Logic tree for heuristic coordination coefficient determination.

Condition number variation with constraint representation, normalization,

and dimensionality.

Condition number variation with constraint and design variable
representation and normalization.

Computational time variation with constraint representation, normalization,
and dimensionality for direct decomposition solutions.

Computational time variation with constraint and design variable

representation, and normalization for direct decomposition solution.

Computational time variation with constraint representation, normalization,
and dimensionality for iterative solution.

Effect of normalization on standard deviations between finite difference and

direct decomposition solutions for design variable ease 1.

Effect of constraint representation on standard deviations between finite
difference and direct decomposition solutions for design variable case 2.

Effect of constraint representation on standard deviations between iterative
and direct decomposition solutions.

Effect of normalization on standard deviations between iterative and direct

decomposition solutions.

Effect of constraint representation on standard deviations between design
variable representations for direct decomposition solutions.

Constraint violation history for linear approximation scheme.

Constraint violation history for reciprocal approximation scheme.

CSSO convergence history with unbounded t coefficients.

CSSO convergence history with bounded t coefficients.

Constraint violation history with forced convergence.

CSSO convergence history with variable move limit strategy.

Variation of upper bound and move limits for selected design variables.

Case 1 model - 10 bar truss.

vii



Z

Figure A2

Figure A3

Figure A4

Figure A5

Figure A6

Figure A7

Figure A8

Case 2 model - 25 bar truss.

Case 3 model - 200 bar truss.

Effectiveness space for Case la initial point.

Case 1a convergence histories with no move limit strategy.

Case la convergence histories with move limit strategy.

Move limit histories for Case ia.

Comparison of Case 1b convergence histories with and without move limit
_strategy.

-7

Figure A9 Case 2 convergence histories with no move limit strategy.

Figure A10 Case 2 convergence histories with move limit strategy.

viii



ACKNOWLEDGEMENTS

I give my sincere thanks to Dr. Prabhat Hajela for the friendship and guidance he

has given me during my graduate career. I owe much appreciation to Dr. Jaroslaw

Sobieski, Head of the Interdisciplinary Research Office at NASA Langley Research Center,

for his time and valuable suggestions, as well as for monitoring grants NAG 1-850 and

NAG 1-1004. I am greatly appreciative of the time and assistance given me by Jim Rogers

and Mike Riley of NASA Langley for their help with artificial intelligence and computer

problems. I would like to acknowledge Bill LaMarsh and Laura Hall for the friendship

they have given me, Joanne Walsh for her friendship and tolerance in allowing me the use

of her computer, and the many people at NASA Langley who helped to make my stay there

a productive and worthwhile one. Most importantly, I acknowledge the ever-present moral

support and faith of my family.

ix



i



CHAPTER 1
INTRODUCTION

Large scale engineering design problems are often characterized by

multidisciplinary interactions in which participating disciplines are intrinsically linked to

one another. The interdependencies of discipline analysis modules in such applications

contributes to difficulties in successfully implementing a holistic design synthesis strategy.

Furthermore, such an integrated implementation is also subject to complexities introduced

as a result of an increased number of design variables and constraints. The objective of this

work is to overcome the many obstacles inherent in the multidisciplinary problem in order

to take advantage of the synergistic nature of integrated design.

When one speaks of design optimization, it is essential to distinguish between the

analysis and design processes. Analysis involves determining the response of a defined

system to its environment whereas design involves the process of defining that system

[Van84]. The huge strides made in the development of structural analysis methods over the

last forty years, combined with the growth of high power computing capabilities, has

resulted in the increased application of optimization techniques in the design of engineering

systems [Sch81].

The design process is initiated with a statement of requirements from which the

design criteria are derived. Other design criteria are determined based on the design

concept. The design process itself becomes a learning process as it is determined what the

physics of the actual system can deliver in relation to the desirable system characteristics

[Per84]. The actual design process encompasses several stages in which optimization

methods could be applied in order to achieve an improved design. These stages, as

described in Lem84, consist of the mission definition stage, in which system requirements
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are defined, followed by the conceptual design, preliminary design, and finally, detailed

design stages. The application of design optimization is most effective when introduced

into the early stages of the design process, where numerous decisions must be made

[Miu84].

The conceptual design phase produces some baseline configuration obtained as a

result of complex trade-off studies. The process formerly consisted of guessing an initial

configuration based on intuition and experience, analyzing the configuration, and then

performing time consuming and tedious parametric studies to examine a prescribed design

space. The quality of the answers was thus dependent on the skill of the designer

[Lem84]. The application of optimization at this stage is especially useful in that an

increased number of trade-off studies, design variables, and sophisticated analyses can be

incorporated into the design process, thus aiding in the evaluation of competing design

concepts.

The object of the preliminary design phase is to refine the design estimates made

during the conceptual phase and to add additional detail to the configuration description.

The design baseline is analyzed in significantly greater detail, involving simultaneous

executions of discipline analyses among numerous design groups. As explained in Lem84,

the simultaneous nature of this stage frequently results in inconsistent designs among

groups due to the lack of a definable hierarchy from which iterative loops could be

meaningfully established. The incorporation of optimization in this stage has two-fold

benefits. First, it is in the preliminary design stage that the designer has the largest number

of important options and decisions to make, thus providing the environment in which

optimization techniques can be applied with greatest impact on computational efficiency.

Secondly, the recent advances in system decomposition methods [Sob90] permit

meaningful design optimization in these non-hierarchic environments, thus eliminating the

problems introduced as a result of the lack of an identifiable system hierarchy.
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The final stage in the design process is that of detail design. This stage is largely

mechanical in nature, involving substantially more complex analyses. Detail design is

concerned with local aspects such as joints and openings. By the time this stage is reached,

optimization has very little impact on the overall design requirements.

The present study addresses the applications of optimization in the preliminary

design stage in which the most capability for positive change exists. As previously stated,

a major concern in this stage involves achieving an accurate and efficient mathematical

representation of large engineering systems in order to perform meaningful design

synthesis. Two basic solution strategies have been proposed for these highly coupled

design problems. The first involves an adhoc decomposition in which the participating

analyses of the various subsystems are performed in some prescribed order. In such an

approach, the resulting design is dependent upon the order in which the analyses are

implemented. The more desirable strategy is one which embraces parallel processing, in

which each subsystem is examined simultaneously and with due consideration of all

subsystem interactions [Wei86].

Multilevel decomposition methods provide a systematic approach for decoupling

large complex systems into smaller, more tractable subsystems. These methods account

for the interactions between the subsystems on the basis of a linear sensitivity analysis. In

a majority of such efforts, the decomposition is governed either by an obvious hierarchy in

the system, or on the basis of discipline if there is indeed a multidisciplinary interaction.

The present study develops three general decomposition approaches for

optimization of large engineering systems that are applicable in problems where a distinct

system hierarchy is difficult to identify. The methods are particularly applicable for

multidisciplinary design problems which are characterized by closely coupled interactions

among discipline analyses. Recent technological and computer developments in the areas

of cumulative constraint representations [Haj82], sensitivity analysis for non-hierarchic

systems [Sch76 and Haf80], optimal sensitivity analysis [Sob82], and distributed
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computing capabilities [Rog81], provide the necessarycomponents to create a

decompositionmethodologythatallowsfor truly integratedsynthesisandhastheadvantage

of subsystemmodularity. Suchanadvantageallows for implementationof specialized

methodsfor analysis,computationalefficiency, and the ability to incorporate human

interventionanddecisionmakingin theform of anexpertsystemscapability.

It is important to stressthat the resultsof this investigation are not methods

applicableto only aspecificsituation,but rather,aremethodologieswhich canbeusedfor

a large classof engineeringdesignproblemsin which the systemis non-hierarchicin

nature. Specifically,two automated,or formal,methodsaredevelopedto accomplishthis

purpose. Themethodsarereferredto astheGlobal SensitivityEquation(GSE)Method

[Sob88b] andthe ConcurrentSubspaceOptimization(CSSO)Method, which is largely

basedon a blueprint for genericsystemdecompositionin non-hierarchicenvironments

[Sob88a].Themodularityof thesubsystemswhichexistsin theCSSOis takenadvantage

of tocreateamethodologywhichallowsfor heuristicsto beappliedin anembeddedexpert

systemscapability. ThisapproachisreferredtoastheConcurrentSubspaceOptimization-

EmbeddedExpertSystem(CSSO-EES)Method.

in the investigation of the applicability of the GSE method for large scale

engineeringproblems,amuhidisciplinarytestenvironmentisusedinvolvingthedisciplines

of structures,aerodynamicsandperformance,andflight mechanics.Theobjectiveof the

synthesisprocessis to find theminimumweightconfigurationof a general aviation aircraft

subject to design considerations from all disciplines.

The feasibility of the CSSO method is demonstrated through implementation of a

verification procedure in which a simplistic ten-bar trussmodel provides the test bed. The

minimum weight configuration is sought, with constraints and design variables stemming

from topology determination and member sizing subsystems.

The applicability of an expert systems capability is investigated for the CSSO-EES

method using a control/structure interaction problem. The object of the synthesis problem
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is to determinetheminimumweightdesignof aten-bartrusssubjectto staticanddynamic

loadings, with constraintsplacedon static stress,natural frequencies,and static and

dynamicdisplacements.

In this chapter,the applicationof optimization in the various designphasesis

introducedandsomeof theproblemsassociatedwith theseapplicationsisdiscussed.The

objectivesof this studyarethenstated,with abrief descriptionof themultidisciplinary

exampleproblemsusedfor verificationpurposes.

Chapter2 containsareviewof literaturepertinentto thebasicunderstandingthatis

requiredin orderto appreciatethedevelopmentof the synthesismethodologieson which

this dissertationfocuses.Themostcrucialdevelopmentsin the field of optimizationare

presented,includingareviewof actualindustrialapplicationsof optimizationmethodsin

thedesignprocess.

Chapter3focuseson thesynthesismethodologyrequiredto implementoptimization

in a highly coupledenvironment.Thedifferencebetweenhierarchicand non-hierarchic

systemsis established. Basic conceptsanddefinitions are introduced with a generic

optimizationstatement.

A discussionof variousapproachesto determinecoupled systemsensitivity is

presentedin Chapter4. Theuseof theGlobalSensitivityEquationmethodis comparedto

othertechniques,includingafinitedifferenceapproach.

A genericdevelopmentof the Global Sensitivity Equation (GSE) method,the

Concurrent SubspaceOptimization (CSSO) method, and the Concurrent Subspace

Optimization- EmbeddedExpertSystem(CSSO-EES)methodis presentedin Chapter5.

Therequirementsof eachmethod,aswell aspotentialapplications,arealsoexamined.

Specific applicationsof thesemethodsin testproblemsaredescribedin detail in

Chapter6. Themathematicalmodels,analysisrequirements,andcomputationaltoolsare

delineatedfor eachmethod.
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The implementationof solution techniquesfor thethreemethodsis describedin

Chapter7. TheGlobal SensitivityEquationmethodapplicationscenteron strategiesto

increaseefficiency andsolutionaccuracyfor largeproblems. The ConcurrentSubspace

Optimizationmethodandits heuristiccounterpart,theConcurrentSubspaceOptimization-

EmbeddedExpert System method, are assessedwith the aim of determining their

feasibility.

Resultsobtainedfrom theimplementationof the solutiontechniquesdescribedin

the previous chapter are discussedin Chapter 8. Conclusions drawn from these

discussions, and recommendations for further research are presented in Chapter 9.

!

i
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CHAPTER 2
LITERATURE SURVEY

Structural optimization applications prior to 1960 were predominantly based on a

simultaneous failure mode approach, wherein the inequality constrained weight

minimization problem was converted to obtaining the solution to a set of nonlinear

simultaneous equations. Shanley [Sha52] and Gerard [Ger56] applied this approach to the

minimum weight optimal design of aircraft structural components subjected to compressive

loads. Other applications involved the plastic collapse design philosophy which allowed

for planar flame structural optimization problems to be formulated as linear programming

problems [Hey51, Fou54, Pra56, and Liv56]. Perhaps the first person to recognize that

certain structural optimization problems could be treated as nonlinear mathematical

programming problems was Klein [Kle55], who recognized the importance of considering

inequality constraints in the problem formulation. There is no argument, however, that the

precursor to today's applications of optimization was Schmit's pioneering work in 1960

[Sch60] in which he set forth the structural synthesis concept. In this work, Schmit

introduced the concept of coupling structural analysis and nonlinear mathematical

programming to create an automated optimum design capability that was applicable for a

broad class of structural systems.

The 1960's saw efforts focus in two main areas involving component type

problems [Sch65, Kic68, Str69] and the development of structural synthesis programs

based on coupling finite element analysis and nonlinear mathematical programming

concepts [Gel66 and Kar68]. One of the most significant efforts during this time was

Morrow and Schmit's work in 1968 [Mor68], involving the minimum weight design of
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By the early 1970'sit hadbecomeapparentthat the mathematicalprogramming

approachto structuraloptimizationresultedin inordinatelylargecomputationaltimes,thus

making the approachimpractical for industrial applications [Gel71]. This realization

providedthemotivationfor improvingmathematicalprogrammingefficiencyandrenewing

interest in optimality criteria methods. The early 1970salso saw the beginning of

interdisciplinarydesignresearch[Gi172 and Ful73] .....

The introduction of approximation concepts [Sch74] in 1974 led to mathematical

programming based structural synthesis methods [Haf76 and Sch76] that were markedly

more efficient than their predecessors. The state-of-the-art today continues to build upon

these early developments, specifically with the intent of increasing computational efficiency

and versatility of applications.

Recent interest in the problems associated with multidisciplinary optimization is

evidenced by an increased number 0f conferences, journals, and publications devoted to the

subject. Numerous papers have been published recently which deal specifically with

multidisciplinary optimization applications in such diverse areas as naval structural design

[Dhi84 and Hug84], spacecraft design [Fer84], rotorcraft design [Miu84], automobile

design [Pra84], and aircraft design [Sen88]. The proposed methodologies to deal with the

multidisciplinary design problem have been almost as diverse as the applications and have

mostly proved disappointing.

The intuitive practice of breaking a large task into smaller, more manageable tasks

was applied in Sobieszczanski-Sobieski [Sob82a] in which a linear decomposition method

was applied for hierarchic environments only. Early attempts to solve the non-hierarchic

problem involved wrapping an optimization loop around the contributing disciplinary

analyses [Kro88]. Unfortunately, the approach was computationaily prohibitive and

tended to exclude human iniervention and decision-making. The Global Sensitivity

Equation method demonstrated in Sob90, Sob88b, and B1o87 extended the modularity



conceptof Sob82 to include applications in the non-hierarchic environments existing in

multidisciplinary problems and represented the state-of-the-art in the field as of 1990.

Two review papers in the field of multidisciplinary synthesis are particularly

noteworthy. The requirements and opportunities available in multidisciplinary analysis and

synthesis applications are reviewed in Tolson [To185]. The potentials and achievements of

multidisciplinary optimization are reviewed in Sobiesz, czanski-Sobieski [Sob89].
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CHAPTER 3
DESIGN PROBLEM STA_MENT AND METHODOI.Z)GY

Desi_ Problem Statement

Optimal design is concerned with achieving the best design according to some

prescribed criteria while satisfying certain associated restrictions. Wilde [Wi178] defines

the optimal design as being the best feasible design determined by some prescribed

quantitative effectiveness measure. The motivation behind optimization applications is to

exploit the available limited resources in such a way as to maximize output [Hatg0]. As an

example, a typical objective of an optimization application in the field of structural design is

to determine the minimum weight structural configuration subject to restrictions on stresses

and displacements. The importance of minimum weight design of structures is especially

crucial to the aerospace industry where aircraft designs are controlled more by weight

considerations than by cost.

The concept of optimizing a structure implicitly suggests that there is some freedom

to change the structure. This is accomplished by changing a given set of design variables

over some prescribed range. Design variables can be either discrete or continuous in

nature. A continuous design variable has some range of variation in which it can assume

any value; a discrete design variable can only assume a value from a specified list of

potential values. A change in the design variables results in some change in the overall

design response, either in the objective function or in the problem constraints.

The objective function is essentially a merit function that has some explicit or

implicit relation to at least a subset of the design variables, and can be improved through

manipulation of those variables, in a structural optimization problem, for example, the

objective function would be structural weight, which would be influenced by design
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variablesassociated with structural member sizes. Typically, in realistic optimization

applications, limits exist on both design variables and some response functions that are

dependent on at least a subset of the design variables. These limits are referred to as

constraints. Upper and lower limits on the design variables are side constraints.

Constraints which impose upper or lower limits on the quantities that are dependent upon a

subset of the design variables, are by their very nature inequality constraints. Limitations

which place exact value requirements on these quantities are referred to as equality

constraints.

The notation that is adopted in this work for the objective function, constraints and

design variables is demonstrated in the following optimization problem formulation.

Minimize F(X)

Subject to gj(X) < 0 j=l,...l

hk(X) = 0 k= 1,...m

and Xi L <Xi<Xi u i=l .... n (3.1)

where (X) represents a vector of design variables, gj and hk are inequality and equality

constraints, respectively, and F is the objective function.

It is typical to normalize constraints in order to minimize potential mathematical

problems associated with wide variations in orders of magnitude. This is accomplished

through manipulation of the allowable limits that are placed on the response quantities of

interest. For example, a constraint might exist such that the calculated lateral tip

displacement of a cantilever beam must be less than a prescribed allowable limit. The

inequality constraint would be formulated (according to the representation of Equation 3.1)

as

u - ual < 0 (3.2)
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whereu is the displacement and ual is the allowable limit. It is obvious that this constraint

formulation will have units associated with distance. To place the constraints on the same

basis so that constraint values are all of order one, a normalized representation can be made

as follows.

U
-1<0

Ual (3.3)

The normalized constraint representation of Equation 3.3 will be used throughout this

work.

In the complex engineering design problem associated with a multidisciplinary

application, contributions to the design variables, constraints, and the objective function are

made from all the participating disciplines. The design variable and constraint vectors can

then be described in terms of partitioned vectors, where partitioned subsets are associated

with each discipline's contributions.

Synthesis MethodoloL_v

The general solution process for a gradient-based optimization problem can be seen

in Figure 3.i. The process begins with an initialization ot;design variables and problem

parameters from which an analysis is performed. A sensitivity analysis is then carded out

to find the first derivative information of the output response quantities, such as the

objective function and constraints. This sensitivity information is then used in the gradient-

based optimizer which results in an improved value of the objective function. The process

is terminated when no further improvement in the objective function can be made without

violating the constraints. In a non-hierarchic environment, however, the design process

necessarilychanges.
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Figure 3.1 Generic design methodology for gradient-based optimization.
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A non-hierarchic system is one in which the interactions between subsystem

modules cannot be distributed in a top-down hierarchy such as that demonstrated in Figure

3.2a. Non-hierarchic systems are characterized by subsystem analyses that are linked

through transference of output data, creating a complex network like that of Figure 3.2b.

The synthesis methodology for such a non-hierarchic system is shown in the flowchart in

Figure 3.3. The intrinsically linked subsystem analyses must first be performed within an

iterative framework in order to obtain a converged initial point. A converged initial point is

defined as that point which satisfies the equations

SSI=0
SS2=0

SSN=0 (3.4)

where SSi corresponds tO the analysis associated with the ith subsystem. Once a

converged initial point is obtained, the sensitivity analysis can be performed. However,

due to the large number of analyses required in the process, computational expenses are

often exorbitant. The available computer tools used to perform analysis in such complex

environments, such as structural or aerodynamic analyses, are inevitably computationally

expensive. The piecewise linear optimization approach, or method of approximate

programming, is extremely useful in reducing these computational expenses.

In the method of approximate programming [Gri61], gradient information is used to

create an approximate optimization problem that is solved in lieu of the fully nonlinear

problem, thus reducing repeated costly analyses [Sch76c]. The optimization is then carded

out in the neighborhood of the current design point. Move limits are imposed on the user

prescribed design variables during the optimization process; this is required in order to

maintain the integrity of the linear approximations of the output response quantities.

Determination of move limit values is generally based on problem-dependent heuristics and

user experience.
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Figure 3.3 Design synthesis methodology for generic non-hierarchic multidisciplinary
problems.
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Although several approximation techniques have recently been investigated for

application in this methodology [Sto74, Sta79, and Fad90], one of the most popular and

easiest to implement is based on a first order Taylor series expansion of the objective

function and constraints. Due to the fact that this information is already available for use in

the gradient-based optimizer, no additional effort is required. The linearized optimization

problem based on this type of approximation is of the form

Minimize {F(Y_)+ (X- _)r VF(Y¢)}

Subject to

and

{gj(X) + (X - X)T Vgj(X)} _<0

+(x- =o
Xi-°_i -< Xi _ Xi +_i (3.5)

where cx and 13are prescribed positive constants called move limits and _ is the design

point about which the objective function and constraints are linearized. These move limits

effectively serve to limit the range of variation of the design variables. The optimal design

resulting from the approximate optimization problem of Equation 3.5 then forms the initial

point for the next cycle. The process is terminated when prescribed convergence criteria

are met.

For a highly nonlinear problem, it is essential that appropriate move limits be

established [Mor82]. By allowing the design variables to change only within some

percentage of the initial point, the inaccuracies introduced due to the linear approximations

are effectively controlled. An example of limiting the movement of the design variables in

this manner can be seen in Figure 3.4. A two-dimensional design space is shown with

lines of constant objective function and the constraint boundary defined. A larger move

limit, as seen in case B, results in a greater error than that associated with case A due to the

linear approximations.
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X2

B const

= 0

X1

Figure 3.4 Effect of limiting design variable movement in two-dimensional design
space.
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The needfor restrictivemove limits in certain optimization applications can be

demonstrated in the design of a rectangular beam for minimum weight subject to stress

limitations, where the design variables are the depth and width of the rectangular cross-

section. The displacement, load, and stress relations will be represented as scalars in order

to demonstrate proportionality relationships. The load-displacement relation can be

expressed,

K u =P (3.6)

where P is the applied load, u is the displacement and K is the stiffness. The stiffness can

be replaced by (c I) to obtain

(c I) u = P (3.7)

where c is a constant and I is the moment of inertia. The displacement is now expressed,

u = P / (c I) (3.8)

Stress is def'med in terms of a constant, S, and the displacement as follows.

6 = S u (3.9)

Substituting the previous expression for displacement in Equation 3.9 yields

¢_ = S P / (c I) (3.10)

The moment of inertia for the rectangular section is defined in terms of the width (w) and

depth (d) as,

I = (1/12) w d 3 (3.11)
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Substituting this expression into Equation 3.10 yields a relation for stress in terms of the

design variables as,

6= 12 S P/(c w d 3) (3.12)

From this expression it can be seen that the stress is proportional to the inverse of one

design variable and the inverse of the cube of the other. This results in nonlinearities

requiring small move limits to preserve the validity of assuming a linear behavior in the

stress response.
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CHAPTER 4
SENSITIVITY DETERMINATION

Sensitivity Analysis Overview

The first step in the analysis of a complex structure involves a discretization of the

continuum equations into a finite difference, a finite element, or similar model. The

analysis problem then requires the solution of algebraic equations, ordinary differential

equations, or eigenvalue problems, depending on the response quantities involved.

Determination of sensitivity required in the optimization involves a mathematical problem of

obtaining the derivatives of those equation's solutions with respect to their coefficients

[Haf90].

The sensitivity analysis is typically the most computationally expensive aspect of

the optimization process. It is therefore essential that efficient approaches for sensitivity

evaluation be used in the design process. Numerous techniques exist for the evaluation of

these derivatives, with one of the most popular being the finite difference approach.

Unfortunately, this approach is the most computationally expensive and often has accuracy

problems. Other techniques that are commonly used are the analytical and semi-analytical

approaches. A recently developed approach is the Global Sensitivity Equation (GSE)

method [Sob90], which has significant advantages in complex engineering problem

applications. These approaches will be reviewed in the following sections.

Finite Difference Approach

The finite difference approach is one of the most popular techniques for determining

sensitivity information due to the simplicity of implementation. However, the approach is
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computationallyexpensiveand is often plagued with accuracy problems. The simplest

f'mite difference approximation is the first-order forward difference approximation. Given

some function u(x) of a design variable x, the forward difference approxirr.ation (Au/Ax) to

the total derivative (du/dx) is

Au u(x + _)- u(x)
Ax Ax (4.1)

Another commonly used difference approximation is the second-order central difference

approximation expressed as

Au u(x+ 5x)-u(x- Ax)

Ax 2Ax (4.2)

The finite difference approach requires perturbing the design variable by some

prescribed amount, determining the function value associated with that perturbation, and

then formulating the approximation according to Equation 4.1 or 4.2. Accuracy problems

associated with this formulation are due to truncation and condition errors. When the f'mite

difference approach is used to determine sensitivities for a complex coupled engineering

problem, the synthesis methodology is modified to include an outer convergence loop as

seen in Figure 4.1.

One of the major flaws of the finite difference approach is the possibility that the

effect of a small perturbation may be lost when filtered through a set of analyses iteratively.

For example, in a space truss with over five hundred structural members, is it really

possible to determine the variation in the tip displacement due to a 1% change in the area of

a member at the root? If large perturbations are used to avoid this problem, it is possible

that nonlinearities would yield imprecise sensitivity information.
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Anal_cal Approach

Analytical derivatives are based on obtaining algebraic or differential equations for

the sensitivities by analytically differentiating the governing equations. Although this

approach is advocated by most researchers, the implementation is often difficult, especially

when the functions under consideration have an implicit dependence on the design

variables, and even that, in many cases, is enveloped in complex software packages. The

modifications required to obtain analytical derivatives in such circumstances are often

extremely difficult, and sometimes result in computational costs which exceed even the

finite difference approach.

Implementation of the analytical method for the determination of first-order

derivatives of static displacements is as follows. The equilibrium equations are generated

from a finite element model in the form

[K] {u} = {V} (4.2)

where [K] is the stiffness matrix, {u} is a vector of nodal displacements, and {P} is a load

vector. A static displacement constraint can be expressed in terms of the nodal

displacements and a design variable, x, as

g({u},x) < 0 (4.3)

Applying the chain rule of differentiation yields the expression

d....gg= bg + bg d{u}
dx bx b{u} dx (4.4)

The f'rrst term on the fight hand side is generally zero, leaving only the second term which

must be evaluated. Differentiation of Equation (4.2) with respect to x yields the expression



25

.,.,d{u} _{P} d[K],,

(4.5)

Premultiplication of both sides of Equation (4.5) by the term

_-_ugl[K]-1

yields the expression

igg d{u} _g fK]_I(_{P} d[K] {u})
8{u} dx = _u}" " _.'_x dx (4.6)

The solution of Equation (4.6) can be achieved by either the direct or adjoint method

[Haf90] yielding the analytical derivative for the constraint g({u},x).

Semi-Analytical Approach

The semi-analytical approach, as the name implies, involves a combination of

analytical and non-analytical methods. The analytical approach requires derivatives of the

stiffness matrix and load vectors with respect to the design variables. These derivatives are

often extremely difficult to obtain, especially when complex software packages such as

finite element programs are used. In the semi-analytical approach, the derivatives of the

stiffness matrix and load vectors are approximated by finite differences. The derivative of

the stiffness matrix with respect to a design variable, x can be approximated by a forward

finite difference representation, for example, as

d[K].,[K(x + Ax)]-[K(x)]
dx Ax (4.7)
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A similar expression can be written for the derivative of the load vector with respect to the

design variable. However, in typical static structural analysis problems, this derivative is

generally zero.

Although the semi-analytical approach is as efficient as the analytical approach, due

to the inclusion of approximations made by application of the finite difference technique,

the resulting derivatives are subject to some of the same accuracy problems associated with

the finite difference derivatives.

Global Sensitivity Eo_uation Approach

i

i

The Global Sensitivity Equation (GSE) approach involves defining total derivatives

of the output response quantities in terms of local sensitivities of the outputs of each

subsystem with respect to that subsystem's inputs. Although the local sensitivities are

determined by a finite difference approach, these sensitivities are calculated within each

subsystem, thus removing the need of an outer iterative loop that would introduce

unacceptable inaccuracies into the solution. The method is particularly applicable for

complex engineering problems in which numerous coupled subsystems exist. A detailed

development of the GSE Method is presented in Chapter 5.
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CHAPTER5
FORMAL AND HEURISTICSYSTEMDECOMPOSITIONMETHODS

A generic development of the Global Sensitivity Equation (GSE) method,

Concurrent Subspace Optimization (CSSO) method, and Concurrent Subspace

Optimization- EmbeddedExpertSystem(CSSO-EES)methodis presented.

Eonml..Mr,,0a.o 

Two methods are introduced that provide a vehicle for automated design of

complex, coupled engineering systems. Both methods are strictly algorithmic in nature,

making use of problem-dependent heuristics only to the extent of initializing parameters

prior to implementation of the design process. A development of these two formal

approaches to system decomposition for design and optimization is presented.

Global Sensitivity Equation Method

The Global Sensitivity Equation approach is a methodology for obtaining the total

sensitivity of the output response quantities of each subsystem with respect to the design

variables of each subsystem. The total derivative information thus obtained is utilized in

constructing the approximate optimization problem described in Chapter 3. The design

variables and constraints from each subsystem are considered at the system level in an 'all-

in-one' optimization within the context of the piecewise linear approach.

The underlying concepts in this formal approach for decomposition are simple and

make use of the fact that the f'u'st derivative of a nonlinear function at a point is equal to the



28

first derivativeof thefunctionlinearapproximationatthatpoint. Considerthecaseof two

disciplinesA andB, the interactionsbetweenwhich areillustratedschematicallyin Figure

5.1. Theanalysisequationsfor thetwodisciplinescanbeexpressedin a symbolicform as

follows.

A((XA ,YB),YA)=0

B((XB ,YA),YB)=0 (5.1)

Here, XA and XB are the variables local to the system A and B, respectively. YA is the

output vector for the system A and, in the most general form of coupling, this vector acts as

a set of auxiliary input variables for system B. Similarly, YB is an auxiliary set of input

variables for system A. Thus, the variables YA and YB provide the coupling between the

two systems. It is possible to rewrite the above expressions in an explicit form as follows.

YA=(XA,YB)

Ya=(XB,YA) (5.2)

A first order Taylor series representation allows us to write,

dYA = 0YA + 0YA dYB

dXA OXA OYBdXA

dYB_/)YB _ /)YB dYA

dX B _)X B _)YAdXB (5.3)

The chain role can be applied to Equation 5.2 to obtain two more equations of the following

form.
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Figure 5.1 Subsystem interactions flowchart.
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dYB OY B dY_

dXA _YA dXA (5.4)

These equations can be rei_resented in a matrix notation as follows.

i orb =
-0YA t 0 J

I

0YA

_ OYA'] (dY A )

I Jt_B l [OXBJ
(5.5)

Note that the total derivatives dYA/dXA, dYA/dXB, dYB/dXa, and dYB/dXB can

be solved from the above set of equations if the partial sensitivity derivatives that appear in

the coefficient matrix and in the right hand vector are known. These partial sensitivities can

be computed locally within the system, eliminating the need to perform computationally

expensive interdisciplinary iteration. This also diminishes the possibility of errors

associated with round-off and truncation in the iterative process, from having adverse

effects on the quality of the sensitivity results. It is worthwhile to note that the output from

the analysis of one discipline may contain data that has no influence on other disciplines.

As an example, the output from a structures analysis may include modal and frequency

information that is passed as input to both aerodynamics and flight mechanics disciplines.

However, it may also include data such as the objective and constraint function information

that is not passed as input. Although this data has no influence on the analyses of the other

disciplines, including it in the output vector yields total derivative information directly from
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the solution of the GSE. Post-processingto determinethe derivativesof these output

response quantities is, thus, unnecessary.

Since the Global Sensitivity Matrix (GSM) is a function of local sensitivities of

outputs to inputs which can be obtained within each discipline independently, the approach

essentially permits a deeoupling of large systems into smaller subsystems. The sensitivities

obtained from the above analysis can be used to develop linear approximations to the output

response of each subsystem, which can be subsequently employed in the gradient-based

piecewise linear optimization process. However, due to the complexities of large

engineering problems, the dimensionality of the local sensitivity matrices may be

prohibitively large for repetitive decomposition in an optimization sequence, and may

contribute to substantial reductions in the numerical efficiency.

Con_:wI'ent Subt;pace Optimization Method

The Concurrent Subspace Optimization (CSSO) method permits the decoupling of a

large engineering system into smaller subsystem modules in order to achieve concurrent

optimizations in each of these subspaces. This method essentially takes the concept behind

the Global Sensitivity Equation method one step farther, performing not only the sensitivity

analyses within each individual subsytem, but the optimizations as well. Unlike the

conventional method of subspace optimizations, however, the proposed method eliminates

the need for a full analysis in each subspace, thereby providing potential computational

savings. The method is particularly well-suited to applications in a design organization

setting in which tasks are distributed among groups of specialists representing physical

subsystems and disciplines.

The evolution of optimization techniques has resulted in quite diverse and largely

discipline-dependent approaches. Certain algorithms are often totally dependent upon the

unique physics associated with the discipline in question. For instance, optimality criterion
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methodsarespecificallytailoredfor structuralweightminimizationapplications.Hence,

certainof thesediscipline-dependentoptimizationtechniquesmaynotbeapplicablewithin

the frameworkof a traditional systemlevel optimization approachbasedon sensitivity

information. Themainmotivatingfactorbehinduseof theCSSO,therefore,is theability

to takeadvantageof thediscipline-dependentalgorithmswithin eachsubspace optimization.

Implementation of the CSSO progresses as seen in Figure 5.2. A system analysis

is first performed in which contributing analyses, or subsystems, are first defined in order

to obtain behavioral response sensitivities by application of the GSE. Constraints in each

subspace are represented by a single cumulative constraint measure, C, by means of a

Kresselmeier-Steinhauser (K.S.) function [Haj82].

The cumulative constraint can be written

C=-I In exp p.gj
P (5.6)

where m is the number of constraints being represented in the cumulative constraint

formulation and p is a user-prescribed constant. A smaller value of p allows more

constraints to participate in the cumulative constraint representation while a larger value of

p allows the most critical constraint to dominate. The derivative of this representation with

respect to the design variable Xi may be determined analytically as follows.

__dXi m gJ)J LJ=_ll._i.iexp/p.gj)

(5.7)

The design variables are then allocated to the subspaces on which they have the

greatest impact. This allocation is based on the sensitivity of the cumulative constraint and

on the sensitivity of the objective function with respect to the design variables in the form
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of effectiveness coefficients. Effectiveness coefficients [Haj81], eij, essentially quantify

the impact of a particular design variable, Xi, on the design at a point and can be written,

dgj/
/dx 

eij = _//dX i
(5.8)

where, gj are the inequality constraints and F is the objective function. In order to

determine the overall effectiveness of a design variable with respect to all design constraints

simultaneously, it is necessary to rewrite Equation 5.8 in terms of a cumulative constraint.

The effectiveness coefficients are now redefined in terms of only one subscript as,

e i -- _/dX i
(5.9)

Once effectiveness coefficients are determined for all subspaces, a rank-ordering procedure

is used to determine the subspaces for which design variables have the greatest impact.

For instance, in a two subspace system, effectiveness coefficients associated with each

design variable and with the cumulative constraint for each of the two subspaces, would be

determined. If a particular design variable is found to have a smaller effectiveness

coefficient value (larger impact) for subspace 2 than for subspace 1, it is then allocated to

subspace 2. Allocation of the design variables to the subspace upon which they have the

greatest impact avoids potential divergence of the CSSO method.

Following design variable allocation, temporarily decoupied optimizations are

performed in each subspace concurrently. The goal of these subspace optimizations

(SSOs) is to reduce the violation of the cumulative constraint with the least increase of the

system objective function or greatest decrease if the cumulative constraint is already

satisfied" Essentially, the violated cumulative constraint is reduced only by some fraction,
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with theotherSSOsresponsiblefor reducingtheremainderof theviolation. It is necessary

that a feasible solution be obtained at the completion of the SSOs so that a constrained

minimum exists. If such a result is not possible due to an initially infeasible design and

restrictive move limits, constraint reduction techniques must be applied [Bar88].

The subspace optimization problem can be stated as follows,

Minimize F(X k)

Subject to cP-<cP° [ sP(1- rP)+(1- sP)t[] p=I, NSS

xL <Xk <xU (5.10)

where sp, rPk, and tr'k are coefficients representing cross influences of one subspace on

another. Since the subspace optimizations are decoupled, with only subsets of the system

design variables in each subspace, it is essential that some form of coordination exist

between subspaces. The coordination coefficients perform this duty.

The rPk coefficient represents the 'responsibility' assigned to the kth SSO for

reducing the violation of the cumulative constraint in the pth SSO. Even though design

variables have been allocated to the subspace on which they have the greatest impact, it is

easy to imagine how these variables would still have an effect on constraints of other

subspaces due to the couplings which exist in the non-hierarchic system. It then becomes

necessary to account for this effect during the subspace optimizations. The rPk coefficients

essentially divide the responsibility for satisfying constraints amongst the subspaces

according to the impact of the design variables within each subspace on the cumulative

constraint.

The initialization of the rPk coefficients is based on the system sensitivities

determined by the GSE. The sensitivity of the pth cumulative constraint with respect to the

design variables associated with the kth subspace, is represented by the relation,
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cPk -- dC p
i = l, nxk

(5.11)

where, nxk is the number of design variables in the kth subspace. A matrix of cumulative

constraint sensitivities is formed as follows.

J m_

k=l

p=l ..- p=_

cl' i i
i 1 ! .'I''" I :

c'o'x,:
! !

! !
! I

--;---r---i--r-
_ :__.t-'_'.d__ L_

cp
.- ,,o :

(5.12)

where, { is the total number of subspaces and nx{ is the number of design variables

allocated to the {th subspace. A variable, vPk, can be defined in terms of the maximum

absolute value of sensitivities for each subspace. This variable corresponds to each

column, p, of matrix J, as follows.

maxi(IcPk[)

VP=maxk[maxi(IcPkD]
(5.13)

Scaling the _k values such that the sum of the values over k for each column is unity,

yields the rPk values as follows.

p=l,_

(5.14)
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Figure5.3ademonstratestheresponsibilitiesassignedto Subspaces 1, 2, and 3 for

satisfying the cumulative constraint associated with Subspace 3. The responsibility

coefficients for a particular 'p' constraint must equal 1.0 over all subspaces 'k'. This

essentially means that 100% of the responsibility for satisfying a subspaces cumulative

constraint must be accounted for.

The tPk coefficient represents the 'trade-off associated with each subspace that

allows for the violation of a constraint in the pth SSO in order to obtain a reduction of the

objective function, provided that the constraint will be oversatisfied in the kth SSO. Such a

trade-off can occur only when the present and previous optimization cycles have produced

satisfied constraints. Figure 5.3b demonstrates the trade-off in constraint satisfaction

which might occur amongst three subspaces. It is essential that any violation that is

permitted be compensated in other subspaces so that the sum of all trade-offs across the

subspaces is zero. The 'switch' parameter, sp ,is responsible for enabling or disabling the

rPk or tPk coefficients depending on whether the constraints are initially violated.

Following the subspace optimizations, a new constrained minimum point is

defined. Due to the fact that the SSOs are formulated in terms of the coordination

coefficients, rPk and tPk, the new optimal point is dependent on these variables. Therefore,

it is possible to mathematically determine the sensitivity of the system objective function, F,

to these variables by implementation of an optimum sensitivity analysis (OSA). Such an

analysis is dependent upon Lagrange multipliers, which are defined in terms of the Kuhn-

Tucker conditions [Van84].

At a constrained optimum, where X* defines the optimum design, the Kuhn-

Tucker conditions require that,

m 1

VF(X*)+ _.jVgj(X*)+ X_.k+m Vhk(X*)=O
j=l _=1

and

(5.15)

_.jgj(X*)=0 j = 1,m and _.j > 0 (5.16)
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where _,j and _k+m are the Lagrange multipliers associated with the inequality and equality

constraints, respectively. As can be seen from equation 5.15, only one Lagrange multiplier

corresponds to each constraint. Equation 5.15 can be written for the case of no equality

constraints and in terms of just one cumulative constraint, C, as follows,

dF dC

dX k + X k dX---_ =0
(5.17)

where k represents the kth subspace. As previously described, in each subspace

optimization, the system objective function is minimized with respect to a subset of the

design variables and subject to constraints (defined in terms of the coordination

coefficients) which are associated with each of the subspaces, thus yielding _ constraints

per SSO. Therefore, distinct values for F* are obtained in each subspace following the

subspace optimizations.. Hence, Lagrange multipliers can be found corresponding not

only to each constraint, but also to each subspace. This dictates a slightly different

treatment of the Kuhn-Tucker conditions. Equation 5.17 can be rewritten to include

consideration of each constraint in the SSO within the kth subspace as,

dC p

dF, + _ X_ dX----_= 0
dXk p=l (5.18)

Rewriting this expression in matrix form, it is possible to obtain a relation for the Lagrange

multipliers as a function of constraint and objective function gradients associated with each

subspace from Equation 5.18 as follows.

[ f dcll-'F l T
(5.19)

Here, [_,d and [dC/dX k] are partitioned matrices of the form,
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and [dC/dX k] = [dCI/dXk,dC2/dX k....dC_/dXk] T (5.20)

Once the Lagrange multipliers are obtained, the optimum sensitivity of F simplifies to,

(5.21)

where zi'is a variable representing either rPk or tPk.

The derivative information obtained in the OSA is now used in the coordination

optimization problem (COP) in which the system objective function is minimized with

respect to the rPk and tPk coefficients. Completion of the COP yields new coefficients for

use in the next SSO. The coordination optimization problem is defined in the following

manner.

Minimize P pF(rl_ ,t k )

Subject to ]_rkP=l
k

EtP=o
k

O<rP<l

rkp <_P<_P and P < p
L--lk -'k U tkL -tk <tkPu (5.22)

Following the update of the coefficients, the entire process is repeated until prescribed

convergence requirements are met.

Certain advantages and disadvantages of the CSSO can be identified based on the

performance of other decomposition-based algorithms. Due to linearizations which exist in

both the SSO and the COP, move limits may be somewhat restrictive, depending on the
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problemparametersensitivityresultingfrom theOSA maybein error if activeconstraint

switching occurs. The theorizedmerits of the approach,however, far outweigh the

identified disadvantages.The most importantfeatureof the CSSOis the fact that the

modularity of the methodallows for the efficient decoupling of the systemto permit

concurrentsensitivityanalysesandsubspaceoptimizationsthatcancorrespondto specialty

groupswithin anorganization.Further,theapproachis particularlyamenableto human

judgement andinterventionor the applicationof anartificial intelligence basedexpert

system. Theseadvantagesanddisadvantagesarediscussedin moredetail in following

chapters.

Heuristic Method: Concurrent Subspace Optimization - Embedded t_x_rt SystemMethod

A method is introduced that couples algorithmic and heuristic concepts to permit the

'intelligent' automated design of non-hierarchic systems. The method makes use of

problem-dependent heuristics in the form of an embedded expert system capability. A

development of this heuristic approach to system decomposition for design and

optimization is presented.

Integration of the algorithmic aspects of the CSSO method with problem dependent

heuristics is achieved with an embedded expert systems capability. The inference envi-

ronment used is the 'C Language Integrated Production System' (CLIPS) [Gia89]. CLIPS

is invoked in an embedded mode from within a FORTRAN program, thus providing a

convenient link between procedural and heuristic processing of information.

CLIPS is an expert system shell comprised of three basic components - the fact-list,

the knowledge base, and the inference engine. The facts (which are entered into a fact-list)

in a CLIPS program are the data that stimulate the execution of the rules. They are entered

into the fact-list with an assert command as follows
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(assert (factl))

Thefactwithin the inner setof parenthesescanbecomposedof morethanonefield, with

thefirst field quiteoftenreservedto demonstratearelationamongstthefollowing fields,as

in theexample

(assert(constraint_value
less_than_zeroequal_zero greater_than_zero))

Thedefinedrulesusetheassertedfactsin thefact-list to make a program execute.

The CLIPS format of these rules is analogous to an IF THEN statement in procedural

languages. An example of such a pseudocode statement is

IF
THEN

the value of consu'aint is less than zero
the constraint is feasible.

The CLIPS format for this rule would be

(defrule constraint_status
(assert (constraint_value

=>

(assert (constraint_status

less_than_zero))

feasible)))

where the left hand side (LHS) of the rule contains the patterns (i.e. (constraint_value

less_than_zero)) and the right hand side (RHS) contains the actions (i.e.

(constraint_status feasible)). The rule is activated and put on the agenda if all the patterns

of a rule match facts in the fact-list.

The knowledge-based problem solving system involves three basic levels of

organization - the function, knowledge, and program levels [Ton87]. The function level

corresponds to actual design implementation, the knowledge level contains detailed

description of the design domain, and the program level contains the mechanics of

implementing the design steps. Figure 5.5 demonstrates the organization of tasks with

respect to these levels in the problem solving system previously described. The
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implementationof these features is shown in the flowchart in Figure 5.6, in which the

modified heuristics-based CSSO is shown. The specific applications of the embedded

expert systems capability include the allocation of design variables among subspaces, the

determination of optimization parameter values, the assignment of move limit values for

efficient convergence, and the determination of coordination coefficient values. These

tasks, which form the basis for the CSSO-EES method, are examined in more detail in

Chapter 7.
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CHAPTER 6
ANALYSIS METHODOL(_Y AND MODEL DESCRIPTION

A description of the design objectives, application

methodology is presented for each decomposition approach.

model, and analysis

Global Sensitivi _tyEquation Method

Dg_ign Objective

The objective of the synthesis process is to find the minimum weight configuration

of a general aviation aircraft (Figure 6.1) subject to design limitations derived from

structural integrity and aerodynamics/flight mechanics performance characteristics. Design

variables contributing to the fulfillment of the optimization objectives stem from planform

geometry and sizing of the aircraft. The non-hierarchic multidisciplinary environment of

structures, aerodynamics, and flight mechanics is represented in terms of distinct analysis

modules as seen in Figure 6.2. Each discipline module has inputs in the form of design

variables that are intrinsic to that discipline as well as output data from other disciplines.

Aoolication Model
44

The finite element analysis model for the structures discipline, with representative

node and panel numbering, is shown in Figure 6.3. A stick model of the fuselage and tail

structure represented by beam elements is connected to a built-up membrane/stringer model

for the wing structure. A symmetric half of the structural model is used with a total of four

hundred and twenty-six degrees-of-freedom. Definition of the aerodynamic model is in
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*|'*It"MAX,
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Figure 6.1

Source:

Three view of general aviation aircraft.

J. Roskam, Airplane Hight Dynamics and Automatic Hight Controls. Pt. I
(Roskam Aviation Engineering Corporation, Lawrence, Kansas, 1979, p.
590).
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Figure 6.3 Structural finite element model.
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accordancewith the input requirementsof an unsteadydoublet lattice program ISAC

[Pee79],and is shownin Figure 6.4. This figure alsoshowsthe discretestructuraland

aerodynamicanalysismodelsusedin thiseffort. A beamrepresentationfor thefuselageis

retained. A lifting surface,definedastheaggregateof the upperandlower surfacesof a

wing with a NACA 2412airfoil, is modeledwith plate elements.A similar approachis

usedto modelthehorizontalandverticaltails.

Analysis Methodology

Structures Subsystem. The equation for

problem associated with the structures subsystem is,

([K]- 0_i_ [M]){_)}i = 0

the free vibration eigenvalue

(6.1)

where

Generalized mass and stiffness matrices are defined as,

and

{O}i and co2 are the eigenvector and eigenvalue for the ith mode, respectively.

[M] = [*]T[M][d_] (6.2)

[K] = [O]T[K][O] (6.3)

where the modes are normalized with respect to the mass matrix such that,

[M] = [I] (6.4)

The equations of equilibrium for linear static structural analysis are written as,

[Iq{u} = {P} (6.5)
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nodal displacements as,
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The element stresses are defined in terms of the

{c} = [S]{u} (6.6)

where [S] is the stress transformation matrix.

All structural analysis pertinent to the problem is performed using the finite element

program 'Engineering Analysis Language' (EAL) [Whe83]. EAL is a high-order language

with primary applications in analysis and design of solid and fluid systems based on a f'mite

element representation of the analysis domain. Individual processors communicate through

a data base containing information describing the finite element model of the structure, as

well as data accumulated during execution of the runstream.

Aerodynamics and Performance Subsystem. In terms of primary structural

coordinates, x, the equation of motion for a structure subject to aerodynamic loading can be

written as follows.

[M_s 2 +(1 + ig)M_03_ +q**Q_]_ = q**Q_w C
(6.7)

Here, the superscripts M and G denote quantities associated with the motion and gusts,

respectively, and g is the structural damping coefficient. The gust time history is modeled

as a deterministic sharp-edged gust. The generalized aerodynamic force matrix is defined

as,

[Q(k, Ma)] = [_]T[AP(k,Ma)] (6.8)

where k is the reduced frequency, Ma is the Mach number and AP is the differential

pressure over the surface.
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Performancerequirementsaredefinedasconstraintsin theoptimizationproblem,

and aredeterminedfrom well documentedrelations[Per49]. The stall velocity is found

from therelation,

(6.9)

whereW is theweightof theaircraftattake-off,Pais thedensityof air at sealevel,andS

is thewing area.Anotherperformancerequirementis the landingdistanceoverafifty foot

obstacle,andis calculatedby summingthedistancein theair DA, andthedistanceon the

groundDG,where

and

o wFv 0-v 50]A =-'F- L 2 + (6.10)

DG _- V_

2a (6.11)

The quantity (W / F) is the average resistance coefficient, a is the uniform deceleration on

the ground, VL and V50 are the velocity at landing and at a fifty foot height, measured in

ft/sec. Similarly, the take-off distance over a fifty foot obstacle (DTo) is found from,

where

DTO =

100I( 1000

9 3 (6.12)

W 2

SHPCLro F (6.13)

and HP and F are the rated horsepower of the engine and the ratio of air densities,

respectively, and CLTO is the lift coefficient at take-off.
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Breguet'sFormulais usedto determinetherange.Basedon theassumptionthatall

fuel is used,therangeR, in miles,canbeexpressedas,

R=375 CL Nln(.-_-W /

CoF t,%) (6.14)

where N is propeller efficiency factor, F is the specific fuel consumption, and Wp is the

difference between the take-off weight and the weight of the fuel.

Stabilil;y and Control Subsystem. A first order state space representation is used for

the analytical model of the flight mechanics subsystem. The equation of motion for a

structure with active controls and subject to time varying airloads can be written in terms of

airloads Qi and modal displacements qi as follows,

Ii

Mi/]i(t) + t.oi2Miqi(t) + EQijqi(t) = - QisS(t) - qi(t)wc(t)
j=! (6.15)

where 8(0 is the control surface deflection and WG(t) is the gust velocity.

The dimensionality of the modal matrix is determined by the number of modes that

are deemed necessary to model the structural displacements and other system degrees-of-

freedom. Since the lower modes are dominant in representing the displacements, typically

only the f'trst six to ten modes are used in the analysis.

The f'trst order state-space representation of the governing differential equations for

the open-loop system can be written as follows,

{_}=[A]{x}+[B]{u}+[H]{n} (6.16)
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whereA is the systemdynamicsmatrix, B and H are thecontrol andgust distribution

matrices, respectively; x is the state variable vector; u is the control input vector, and n is

the gust vector.

In terms of the state vector x, the system output y can be written as,

{y} = [C]{x} (6.17)

where the [(2] matrix contains information specific to the location of the sensors. The

output vector is of length s, where s is the number of sensors present in the system.

The optimal state feedback control law can then be found as a function of the gain

matrix as follows.

{u] = -[G][x] (6.18)

The use of this relationship in Equation 6.16 yields an expression which allows the

determination of the optimal state for the closed-loop system. A time-marching method is

used to determine the time history for the state variables. Once the state solution is known,

the dynamic displacements can then be retrieved for each degree-of-freedom. The control

input resulting from this analysis is used to determine the mass of the physical control

system. This mass is used as an input to the structural system and directly influences the

structural dynamic characteristics.

The required stability derivatives for the stability and control analysis are obtained

through a semi-elastic stability analysis, which constitutes a modification of rigid body

stability characteristics to account for structural deformations. The relationship,

[K]{q}+q**[Q]{q}=0 (6.19)
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betweenthe stiffnessmatrix and generalizedaerodynamicforce matrix, [Q], yields an

elasticgeneralizedaerodynamicforcevector,{Q}, asa function of rigid andelasticterms

suchthat

{Q_2] (Q,2_ [Q,3 "'" Q,n - -, Q32
Q_J_=_Q_2J'-q'[.Q_3 "'" Q2,,I[K+q'Q] {On2}

(6.20)

wheren is the numberof elastic andrigid body modes and the first two rows of [Q]

correspond to pitch and plunge.

Selected stability derivatives are determined in terms of the semi-elastic generalized

aerodynamic force vector which are then used in the stability and control analysis to obtain

the eigenvalues of the characteristic equation. The time-to-half is determined from the

relation [Etk82],

0. 69 t°

tl/2 = _ (6.21)

where _ is the eigenvalue for the mode under consideration and,

t* -" C

2U (6.22)

defined in terms of the mean chord length c and the velocity U.

The rigid-body stability and control analysis is performed using a modified version

of programs available in [Sme84].

Concurrent Subspace OplJmization Method

Design Objective

The objective of the synthesis process is to find the minimum weight design of a

truss structure subject to constraints derived from requirements of structural strength and
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stiffness.Designvariablescontributingtothefulfillment of theoptimizationobjectivesare

structuralelementsizingvariablesandastructuralgeometryvariable.

The non-hierarchic environment which exists in the size/topology system is

representedin termsof distinctanalysismodulesasshownin Figure6.5. Eachsubsystem

modulehasinputsin theform of designvariablesthatareintrinsicto that subsystemaswell

asoutputdatafrom theothersubsystem.

,a,pplication Model

The ten-bar truss structure in Figure 6.6 was used to demonstrate the feasibility of

the CSSO method. Two degrees of freedom (x and y) are permitted at each of the four

unconstrained nodes, thus yielding an eight degree-of-freedom system. The structure is

subjected to static loadings as shown in the figure.

Analysis Methodology

Subsystem 1 - Sizing The design variables for Subsystem 1 are the cross-sectional

areas of the ten truss members. The output vector for the analysis associated with the

subsystem contains the sizing variables, the objective function value, and a cumulative

constraint measure representing the static stress constraints. The vectors are written:

and
T

{Yss1} ={A1 ..... AIo,W,Cssl}

(6.23)

(6.24)

Subsystem 2 - Topology The design variable for the topology subsystem is a

geometry variable, D, which controls the depth of the truss structure at the wall. The
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Figure 6.5 Subsysteminteractions in size/topologyproblem.
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output vector from the analysis contains the geometry variable, the objective function value,

and a cumulative constraint measure representing the static lateral displacement constraints.

The vectors associated with the subsystem are written:

and

{Xss2}T={D}

{Yss2 }T ={D,W,Css2}

(6.25)

(6.26)

Inclusion of the design variables in the output vectors associated with both subspaces is a

special case. Here, the analysis of one subspace requires the design variables of the other

subspace as input variables, thus establishing a coupling between subspaces. All structural

analysis pertinent to the problem was performed using the finite element program EAL.

Concurrent Subspace Optimization - Embedded Expert System Method

Desi_ Objective

The design objective of the control/structures interaction (CSI) problem is to find

the minimum weight cantilever ten-bar truss structure subject to constraints on static

stresses, natural frequencies, and static and dynamic displacements. Design variables are

contributed from both disciplines and include truss member sizing variables and a controls

damping constant. Figure 6.7 demonstrates the subsystem coupling which exists in this

problem.

Application Model

The ten-bar truss structure in Figure 6.8 is used to demonstrate the effectiveness of

the CSSO-EES methodology. The truss is equipped with active controls to limit the

dynamic displacements to preassigned levels. Two degrees-of-freedom (x and y) are
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Figure 6.7 Subsystem interactions in CSI problem.
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permittedat eachof the four unconstrained nodes, thus yielding an eight degree-of-freedom

system.

The structure is subjected to static and dynamic loadings as shown in Figure 6.9.

The lateral dynamic displacements are controlled by four sets of hydraulic actuators placed

at the unconstrained nodes of the truss. The forcing function, f(t), is a ramp input applied

over a two second interval.

Analysis Methodology

Subsystem 1- Structures The governing equation

eigenvalue problem associated with the structures subsystem is

([K]-_2rM]){0}i =0

for the free vibration

(6.27)

where {¢)i and o_i2 are the eigenvector and eigenvalue for the ith mode, respectively and

the structural eigenvalue analysis is obtained from the fmite element program EAL.

The design variables associated with the structures analysis are the cross-sectional

areas of the ten truss members. The output vector for the analysis associated with

Subsytem 1 contains the eigenvector and eigenvalue information, the structural weight, and

a cumulative constraint measure representing the frequency, static stress, and static

displacement constraints. The vectors are written:

{Xss1}T={AI ..... AI0} (6.28)

and

(6.29)

Subspace 2-Controls The equation of motion for an actively

controlled structure subjected to forced vibration can be written,
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+[c]{t}+[Kl{r}=[b]{u}+[G]{f} (6.30)

where [b] is a matrix containing information concerning location of actuators, [6] is a

matrix containing applied load information, {r} is the displacement vector, {u} is control

input, and {f} is the dynamic forcing function. The damping mawix in Equation 6.30 is

traditionally represented by a proportionality relationship as follows,

[c] = a IKI + 13IM] (6.31)

where o_and 13are proportionality constants.

The first, order state-space representation of the governing differential equations for

the open-loop system can be written as,

{i}=[Al{x} + [B]{u} + [B]{f} (6.32)

where {x}, {u}, and {f} are the state, control input, and forcing function vectors,

respectively, and [A], [B], and [B] are the plant, control, and forcing matrices. The state

vectors are defined in terms of the dynamic displacement, velocity and acceleration vectors

as follows.

{i} = {_} and {x}=( r }
(6.33)

A modal reduction technique is applied in which a modal transformation is made of the

form,

{r} = [_] {rl } (6.34)

where {11} is the transformed displacement vector. The above transformation can be

applied to equation 6.30 to obtain,
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[M] = [I] [C] = [2;to] [K] = [¢0z]

(6.35)

(6.36)

all of whicharediagonalmatrices.

In moderncontrol theory, the control vector {u} is determinedusing a linear

quadraticregulator.Theoptimalstatefeedbackcontrollaw isdeterminedby minimizinga

quadraticperformanceindex[Bry69] which is afunction of the stateandcontrol vectors

suchthat,

PI=; ({x}'r[Q]{x} + {u}r[R]{u}_t
(6.37)

where [Q] and JR] are arbitrary weighting matrices. The solution of the optimal control

problem yields the nonlinear algebraic Riccati equation [Bry69] as follows.

[A]T[P] - [PI[B][R]-'[B]T[P] + [P][A] + [Q] = 0
(6.38)

The control gain matrix is defined in terms of the Riccati matrix, [P], the positive definite

solution to Equation 6.38, as,

[G] = [R]-I[B]T[P] (6.39)

The optimal state feedback control law can then be formulated in terms of the gain matrix to

yield the optimal control input such that,

{u} =- [G] {x} (6.40)
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Theoptimalstatecannowbedeterminedby a time-marchingmethodto yield thedynamic

displacements.Themassof thecontrolhardwareis expressedasanexplicit functionof the

controlinput. Thecontrolsanalysiswasperformedthroughimplementationof apackage

of FORTRAN subroutinesnamed'OptimalRegulatorAlgorithmsfor theControlof Linear

Systems'(ORACLS) [Arm78].

Thedesignvariablefor thecontrolssubsystemwasadampingvariable,c, defined

as

2;i
C--m

C0i (6.41)

where _i is a damping coefficient. The output vector from the analysis contains the mass of

the controllers, the weight of the control system, and a cumulative constraint measure

representing the dynamic lateral displacement constraints. The vectors associated with the

subsystem are written:

and

{Xss 2 }T = {C} (6.42)

{YSS2 }T = {me, Wc,Css2 } (6.43)
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CHAPTER 7

IMPLEMENTATION OF SOLUTION TECHNIQUES

The implementation of solution techniques for the three system decomposition

method are presented. The GSE applications center on strategies to increase efficiency and

solution accuracy for large problems. The CSSO and its heuristic counterpart, the CSSO-

EES, are evaluated in terms of verification procedures to determine their feasibility.

Global Sensitivity. Equation Method

In the use of the GSE method for the design problem defined in the previous

chapter, the dimensionality of the global sensitivity matrix is of some concern. If each

subsystem represents a discipline in a multidisciplinary optimization problem, it is

conceivable that for a large number of outputs associated with each discipline, the

dimensionality of global sensitivity matrix can be potentially quite large. The system of

linear algebraic equations that are obtained by application of the GSE method can be

expressed as,

[D]{w}={v} (7.1)

where ID] is the GSE partitioned matrix (GSM) containing the local sensitivity information

of each subsystem, {v} is a known column vector of partial sensitivities, and {w} is the

unknown column vector of total derivatives. If the vector {w}, required in forming the

response approximations for each piecewise linear representation of the system, is obtained

by decomposition of [D], the process can become unacceptably expensive.
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Iterative Solution Technique

The present work adopts an alternative iterative solution to this system of equations,

where an initial approximation to the solution is assumed and is successively modified to a

converged solution. In this investigation, Gauss-Siedel iteration with relaxation is

implemented to encourage convergence.

Gauss-Siedel iteration is recursive in nature, as one repeatedly cycles through

solutions for the unknowns, which then replace the old values. The method, thus,

automatically makes use of the most recently calculated values for the unknowns, resulting

in large computer storage savings, as only one value for each unknown need be saved. A

point relaxation technique is implemented, wherein the calculated value of the unknown is

modified as,

i ---- wi (7.2)

where ;_ is the relaxation factor, (m+l) is the current iteration, and wi(m+l) * is the value for

the unknown obtained by the Gauss-Siedel approach in the current iteration.

System Conditioning Evaluation

The level of ill-conditioning associated with matrix [D] is expressed in terms of a

condition number lDon77] which is defined as,

IID 1t111D-1 II1 (7.3)

Here, the first norm of [D] is used and has the form,

IIDII - max ._ldijl
J 1 (7.4)
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is estimatedbytherelation,

(7.5)

wherevector {y} ischosenand {z} is thendeterminedfrom thesystemof equations,

[D]{z}={y} (7.6)

System Normalization Reauirements

The condition number is a measure by which the accuracy of the solution may be

gaged and is determined by the relative magnitude of the terms in the GSE matrix (GSM).

Since the components of the output response vector Y and the design variable vector X are

of varying magnitudes, it is necessary to scale the partial sensitivity terms in the GSM. A

normalization scheme was implemented to achieve this, and is most easily described by

considering two systems 1 and 2, with scalar intrinsic design variables and scalar output

responses. To determine the total derivatives of the outputs with respect to the design

variable of subsystem 1, the GSE can be written in matrix form as follows.

1

I 1| dY21=I<::3_'I
J[ -TJ (7.7)

The partial sensitivities on the left and right hand sides of the equation are normalized as,

¢3YI' _ Y2 °_Y1 °-:-:3Y2* = Yl bY2 ¢3yt " = X t o3Y+

3Y2 Y1 bY2 °_Yt Y2 _Yt 3Xl Y1 3Xt (7.8)

yielding the normalized Global Sensitivity Equations.
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1

Jr:,
(7.9)

The unscaled behavior derivatives are then recovered from the scaled values by the

relationship,

dYl Y1 dY1 ° dY2 _ Y2 dY2*

dXl Xl dXl dXl Xl dXl (7.10)

Solution Standard Deviation Comparison

The behavior sensitivities obtained from an application of the GSE approach, using both

direct decomposition and iterative methods, were compared with results obtained from a

forward finite difference approach applied to the coupled system. The percent difference in

the two solutions under comparison is written as,

Peri, k = 100 x

ABI, dYi dYi

_dXk, dXk2

MAX[ dYi dYi

i=I,NGSM and k=I,NX (7.11)

where NGSM is the dimensionality of the GSM.

defined as follows.

A variance of Peri,k [Pre86] is then

1

Var(Peri'k) = NGSM

NGSM. 2

i_l'= (Perik)
(7.12)
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A standarddeviationmeasureof thevarianceis adoptedfor convenienceandis definedas

follows.

_(Peri.k)= [Var(Pe_,k)]!/2
(7.13)

Constraint Reduction Implem_..ntations

Constraints for the multidisciplinary synthesis problem described in the previous

chapter are as follows. Structural constraints were placed on the f'trst and second natural

frequencies, on the eight lateral wing tip displacements, on the stress constraints for the

root section stringers and membranes, and on the internal volume of the wing box.

Aerodynamic performance constraints were placed on stall velocity, landing and take-off

distances over a fifty foot obstacle, and range. Controls constraints were placed on the

dynamic lateral displacements of the wing and horizontal tail, the deflection of the control

surface, and the time-to-half for the two longitudinal modes.

The iterative solution to the global sensitivity equations was implemented in

conjunction with an approach to reduce the dimensionality of the system equations.

Explicitly, this involves the reduction in the total number of subsystem output parameters

by an efficient constraint representation approach. Such an approach permits the

representation of a large number of inequality constraints by a single cumulative measure in

the form of a K.S. function.

Solutions of the global sensitivity equations were obtained for three specific cases,

with selective use of the cumulative constraint to reduce the system dimensionality.

Case 1. Constraint reduction techniques are not used. The system output vectors

for the five mode case are as follows.
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Ys = (c'02, _,K,V,I.,W, gs)

Yc = (mc,8,gc)

NS = 453

NA = 30

NC= 19
(7.14)

The GSM dimensionality for this case is 502 x 502.

Case 2. Cumulative constraints are used for static stresses and for static and

dynamic displacements, resulting in output vectors with the following dimensions for the

five mode case.

NS = 400
NA = 30
NSC= 5 (7.15)

The GSM has dimensions 435 x 435.

Case 3. Cumulative constraints are used to represent all constraints in each

subsystem resulting in output vector dimensions as follows.

NS = 389
NA = 25
NSC-- 3 (7.16)

The GSM has dimensions 417 x 417 for this case.

Dcsi_ Variable Allocation Comparisons

ale

The six design variables that may participate as local variables to each subsystem

{Cr,Cm,Ct,b,T,D } (7.17)
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Thevariables Cr, Cm, Ct correspond to the chord lengths at the root, mid-station, and tip

of the wing. The variables b and y correspond to the semi-span and dihedral of the wing.

The placement of the wing on the fuselage is determined by D which represents the distance

between the horizontal tail quarter-chord point and the trailing edge of the wing at the root

section.

Additional design variables traditionally allocated to the structures subsystem

correspond to stringer and membrane thicknesses in the four prescribed wing sections and

were as follows.

{al ..... as,Thl ..... Thl2} (7.18)

Here, al and a2 correspond to the bottom and top stringer areas of section I, a3 and a4

correspond to the bottom and top stringer areas of section II, etc. Similarly, Thl, Th2,

and Th3 correspond to the bottom, top, and side membrane thicknesses of section I.

The gain components of the optimal control analysis were considered to be design

variables in this multidisciplinary synthesis problem and are traditionally placed in the flight

mechanics subsystem. The gain matrix, G, has dimensions nac x 2nmod where nac is the

number of actuators and 2nmod is twice the number of modes considered in the analysis.

(G 1..... G2n mod) (7.19)

Since certain design variables affect the analyses, and hence the design constraints

for more than one subsystem, these design variables can be represented in more than one

way in the GSM. Two representations were implemented in this study.

Case 1. In this case, design variables which contribute to more than one subsystem

analysis were considered design variables in each of the subsystems. The design variable

vectors are,
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Xs = (C,b,y,D,a,Th)

XA = (C,b,?,D)

Xs = (C,b,_',D,G)

NXS = 26

NXA = 6

NXC = 8,12,16 (7.20)

where C are chord lengths at designated span stations, b is the wing semi-span, 7 is the

wing dihedral, D defines the wing location along the fuselage, a are the stringer areas, Th

are membrane thicknesses, and G is the controller gain vector which has dimensions of two

times the number of eigenmodes used in the analysis. As stated previously, one, three, and

five modes were used in the numerical work.

Case 2. In this implem¢ntation, specific design variables were allocated to only one

discipline, but were also represented as output in the Y vectors so their influence was still

retained in other subsystem analyses. The design variable vectors are designated as

follows.

X s = (a,Th)

X^ = (C,b)

X s = (y,D,G)

NXS = 20

NXA = 4

NXC = 4,8,12 (7.21)

Here, the choice of design variables was critical, as it affects the conditioning of the GSE

system matrices.

Conc0rrgnt Subspace Optimization Method

verifiqation Procedure

The validity of the CSSO method is established by application to the structural

synthesis problem defined in the previous chapter. The design variables are permanently
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assignedto the subspaces at the outset of the design procedure in order to simplify the

initial method application. Optimization results for this structural problem are obtained by

three different synthesis procedures for comparison purposes, one of which is the CSSO

Method. An all-in-one optimization is performed for the other two cases in which the

sensitivity information is obtained by the finite difference method and by the GSE method.

Distributed Processing Environment

The advantage of modularity is investigated by implementation of a distributed

processing scheme in order to demonstrate the versatility and potential computational

efficiency of the CSSO method. Subsystem analyses are performed in separate computing

environments concurrently in order to achieve a parallel processing capability. The

schematic implementation of this capability is shown in Figure 7.1.

Approximation Scheme Comparison

The application of various approximation schemes for constraint representations

including linear, reciprocal, and improved [Fad90] approximations were investigated in this

effort. A comparison of optimization convergence histories and constraint violation

histories were made to determine the most effective scheme for the class of problems

considered.

Coefficient Effc_t Evaluation

The effect of the r and t coefficients on the convergence characteristics for the

optimization process was investigated. A study is made to determine whether bounding the

t coefficients yield superior convergence characteristics as well as reduced constraint
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violations. Sincethet coefficientsessentiallyallow for apossibleviolation of constraints

in one subspace as long as an oversatisfaction of that constraint is obtained in the other,

bounding the t coefficients has the effect of limiting the violation that can potentially occur.

The effect of forcing the r coefficients to be active for the last few optimization cycles is

also investigated. This application forces each subspace optimization to satisfy all

constraints rather than allowing for a trade-off to occur between subspaces.

Variable M.o.ve Limit Strategy_

Designers generally adopt a move limit strategy which involves initially assigning

all design variables the same move limit value. As the design process progresses and the

optimum is approached, the initial move limit value is continually reduced as the

approximations become more critical for convergence. However, it may not be reasonable

to group all design variables together in assigning move limit values. If certain design

variables can be identified as having the most impact on a design and therefore requiring

more restrictive move limits, it would be possible to allow the less critical design variables

more leeway in their associated move limits. This would result in potentially reducing the

overall cycles required for convergence, thus increasing computational efficiency. In this

application, implementation of a variable move limit strategy is made to achieve such an

efficient convergence scheme.

The effectiveness of each design variable is quantified by means of the previously

defined effectiveness coefficients with the difference that the K.S. function cited in this

case is a composite K.S. function representative of the most critical cumulative constraints

from each subspace. The resulting effectiveness coefficients define an effectiveness space,

in which upper and lower bounds must be determined as follows.

The mean value of the effectiveness space can be determined from
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1 N
-- ]_e i

(7.22)

where N is the total number of design variables. The associated standard deviation is

determined from the relation,

N 2 ]1/2

°(e) = IN---_ iZ(ei-e) J
(7.23)

The upper and lower bounds of the effectiveness space can now be defined in terms of the

mean value and standard deviation as

e u = E + o(e)

e 1 = E - _(e) (7.24)

Once the effectiveness space bounds are defined, associated move limits can be assigned to

each design variable. For instance, the upper and lower effectiveness bounds might

correspond to areas beyond which 90% and 10% move limits are permitted, respectively.

Design variables with effectiveness coefficients falling within the upper and lower bounds

would be assigned move limits based on a linear distribution between the bounds.

A description of a verification procedure to demonstrate the feasibility of the

variable move limit strategy is presented in Appendix A. Examples and a discussion of

results obtained for various applications are discussed.

Concurrent Subspace Optimization - Embedded Expert System Method

Distributed Processing Environment

A parallel computing environment is utilized in which the structural analysis is

performed on a CONVEX computer while the flight mechanics analysis is carried out on a



80

VAX/VMS system. The coordinatingnodewhich is responsiblefor delegating tasks

betweentheseenvironmentsis alsoaVAX/VMS system.

Desi_ Variable Allocation

Due to the interactions which exist in a highly coupled problem, such as in

multidisciplinary applications, it is reasonable to assume that certain design variables may

contribute to more than one subsystem analysis. Although these design variables can be

allocated to subsystems based solely on sensitivity information, heuristics pertaining to

traditional allocations are useful in situations for which no dominant choice surfaces.

In the CSSO-EES method, the design variable allocation proceeds as follows.

Based on the sensitivity analysis, the impact of each design variable on a particular subsys-

tem's outputs is quantified using effectiveness coefficients, ei.. Based on the values of

these effectiveness coefficients, the relative importance of each design variable with respect

to each subsystem's analysis is established by a rank-ordering procedure. Design variables

which demonstrate a relatively similar influence on more than one subsystem are subjected

to evaluation by the embedded expert system capability to determine their subsequent

allocation.

The facts which must be asserted into the fact-list include the total number of design

variables, the number of design variables already allocated to the various subsystems, and

the type of design variable that is being considered for allocation. For example, in the

structures/controls problem, the design variables are either sizing or damping variables. If

the variable under question is a sizing variable, the fact would be entered into the fact-list

with the command

(assert (dv sizing))
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The rules in theknowledgebasefollow thelogic that if the numberof designvariables

alreadyallocatedto aparticularsubsystemis large,thenthequestionabledesignvariable

shouldbeallocatedto thenon-traditionalsubsystem.For instance,if thenumberof design

variablesalreadyallocatedto thestructuressubsystemexceeds60%of thetotalnumberof

designvariables,theneventhoughthevariableto beallocatedis asizingvariable,it will be

allocatedto thecontrolssubsystemin orderto moreevenly distributethevariablesbefore

performing the subspaceoptimizations. Figure 7.2 demonstratesthe logic tree for the

designvariable(sizingvariables)allocationknowledgebase.

Optimization Parameter Determination

The program CONMIN [Van73], a constrained minimization code based on the

usable-feasible search direction algorithm, is used to perform the subspace optimizations.

Certain parameters associated with the algorithm must be prescribed by the designer prior

to implementation. The expertise required to assign meaningful values to these parameters

is often a limiting factor in the method's use. The implementation of an expert systems

capability that monitors the progress of the algorithm and dynamically adjusts the

parameters under question permits use of the algorithm by general designers. The

parameters that are used in this implementation are 'itmax', 'delfun', 'dabfun', 'itrm',

'phi', 'theta', and 'ct'.

The 'itmax' parameter corresponds to the maximum number of iterations in the

piecewise linear optimization process. 'Delfun' is the minimum relative change in the

objective to indicate convergence, whereas, 'dabfun' is the absolute change in the objective

function. The 'itrm' parameter controls the number of consecutive iterations required for

convergence. 'Phi' is a participation coefficient that is used for infeasible designs and

corresponds to how hard a design will be 'pushed' towards the feasible region. 'Them' is
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ndv_allocated < ndv_total

allocation = unclear

dv = sizing

ndv all struc >= .6 ndv_tot

dv = damping

ndv all struc < .6 ndv_tot

ndv_struc = large ndv_struc = not_large

allocate_dv = controls allocate_dv = structures

Figure 7.2 Logic tree for design variable allocation.
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essentially the mean value of the push-off factor. 'Ct' is a constraint thickness parameter

used to define whether constraints are active or inactive.

The embedded expert system capability in the subspace optimizations addresses the

situation in which the optimization termination is governed by the fact that the number of

iterations has reached the maximum number prescribed by the user ('itmax'), rather than

that convergence is achieved. If itmax is reached and the solution corresponding to the

final iteration is feasible, then the value of 'itmax' is doubled, unless this new value

exceeds an upper bound, in which case the convergence criteria is investigated. If the

parameters 'delfun' and 'dabfun' are both less than prescribed upper bounds, then these

values are increased. If either of these bounds are exceeded, the parameter 'itrm' is

reduced as long as it has not reached a lower bound. If this parameter has reached the

prescribed lower bound, the fact 'process stop' is asserted into the fact-list. A failure to

achieve a converged solution when the design is feasible after adjusting the above

convergence parameters suggests a formulation or input problem.

If, on the other hand, the number of iterations is equal to 'itmax', but the solution

corresponding to the final iteration is infeasible, then those parameters associated with the

constraints are investigated. If 'phi' has not yet been increased in previous applications,

then its value is tripled, thereby "pushing" the design towards the feasible region three

times harder. If the value of 'phi' is greater then the initial value, but both 'phi' and the

value of 'itmax' are less than prescribed upper bounds, then these parameters are increased

in value. If 'phi' or 'itmax' exceed their upper limits, however, then the 'theta' and 'ct'

parameters are modified based on the assumption that the infeasibility and nonconvergence

problem is associated with highly nonlinear constraints. If both parameters are less than

upper bounds, new values of these parameters are calculated. Otherwise, the fact 'process

stop' is asserted into the fact-list, as a continued failure to achieve a converged, feasible

solution once again suggests a user-associated problem, rather than one resulting from
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Figure 7.3 shows the logic sequencefor this heuristic

3_ariableMove Limit Strate_

The strategy proceeds as described in the previous section with the exception that

heuristics are applied to refine upper move limit bound that is originally prescribed by the

user. The facts which must be asserted into the fact-list include constraint satisfaction

status from previous cycles, feasibility status of the converged solutions within the

subspace optimizations, and bound adjustment information from previous cycles. The

rules use these facts to determine whether adjustments to the prescribed move limit bounds

are warranted. If constraints were violated after the update following the subspace

optimizations (in previous cycles) in which converged feasible solutions were found, then

bounds will be tightened. If the upper bound had already been adjusted on the side of

conservativism in previous cycles, it must be adjusted even more strictly for the present

cycle. If, on the other hand, constraints were consecutively satisfied following an update,

the upper bound can be adjusted for leniency. Once the bounds are established, move

limits for the design variables whose effectiveness coefficients fall within the effectiveness

space are determined based on a linear distribution, from the equation

(°-°')(m,U-n+)
ml% = 2o(c----_

+ ml I

(7.25)

where ml u and ml 1 are the upper and lower move limit values originally prescribed by the

user with the upper bound modified by the embedded expert system as the design

progresses (i.e. 90% and 10%). Figure 7.4 shows the decision tree for the move limit

strategy rules.
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iter=itmax

solution=feasible

itmax>=itmaxu itmax<itmaxu

delfun<delfunu

I
itmax=2*itmax

delfun>=delfunu

AND OR

dabfun<dabfunu dabfun>=dabfunu

delfun=delfun+delf

AND itrm<=newitrm itrm>newitrm

dabfun=newdabfun

i process=stop I
itrm=newitrm

Figure 7.3 Logic tree for optimization parameter determination.
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cycle

cycle = 0

LB = 5 UB = 80

cycle > 0

g=not_active

UB<=UMAX/1.2 UB>UMAX/1.2

g=active

g>=0 g<0

g=violated

UB=.7UB

UB=I.2UMAX UB=UMAX UB=.9UB UB=UB

Figure 7.4 Logic tree for heuristic-based variable move limit strategy.
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Coordination variable assignment based on heuristics as opposed to a COP

alleviates problems associated with obtaining problem parameter sensitivities, such as

premature convergence to suboptimal designs or active constraint switching. The

knowledge base contains rules to determine whether a trade-off will be permitted in the

present cycle, based on constraint satisfaction histories from the present and previous

cycles. If no trade-off is permitted, the r coefficients are determined so as to assign a

greater responsibility for a cumulative constraint satisfaction to those SSOs that have a

relatively greater influence on that constraint. Values for these coefficients are algebraically

determined from a scaling process involving manipulation of sensitivity information

obtained from the GSE. If a trade-off is permitted, then the subspace in which the violation

is to be permitted is determined based upon each subspaces ability to reduce the system

objective function. The subspace with the ability to reduce the objective function by the

greatest amount is permitted either a 20% or 10% constraint violation depending on

whether the constraint value of the present cycle is more satisfied than the previous cycle or

not.

The facts which must be asserted into the fact-list include information pertaining to

traditional constraint allocations and the numbers of design variables allocated to the

various subspaces. The rules use these facts to determine whether modifications to the

basis should be implemented. A major consideration involves the traditional allocations of

constraints. For instance, if the constraint under question limits the allowable stresses in

the truss members, it would normally be associated with the structures discipline. The

responsibility for satisfying it would traditionally rest with the sizing variables within that

discipline. However, if the number of variables allocated to the traditional subspace is for

some reason unusually small, difficulties would possibly arise with satisfying the
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constraintwithin that subspace. Therefore, the responsibility for satisfying that constraint

is shifted to the non-traditional subspaces.

Figure 7.5 demonstrates the logic for determining switch parameters and trade-off

coefficient values for subspace 1. Appendix B contains the rules for the four heuristic

implementations.
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$1

cycle

cycle = 0

=0 $2=0

cycle > 0

Ci<-ct & Ci_old<-ct

Si = 0

Ci>=-ct Ci<-ct & Ci_old>-ct

dW/dXl > dW/dX2

Ci > Ci_old Ci < Ci_old

I I
"1"11 = -.1 T1 ] = -.2

T]2 = .1 T12 = .2

Si = 1 Si = 1

dW/dX2 > dW/dXl

Ci > Ci_old Ci < Ci_old

I
"1"11= .1 "1"1] = .2

"1"12= -.1 T12 = -.2

Figure 7.5 Logic tree for heuristic coordination coefficient determination.
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CHAPTER 8
DISCUSSION OF RESULTS

Results obtained by implementation of the solution and verification techniques

described in Chapter 7 are discussed for each decomposition method.

Global Sensitivity Equation Method

The effect of constraint representation, design variable allocation, and normalization

of the GSM on condition number can be seen in Figures 8.1a and 8.lb. As expected, the

condition number increased with increased dimensionality of the GSM and was

unacceptably large when normalization was not used. The allocation of design variables to

distinct disciplines and their inclusion in the output vector had little influence on the

condition number. As can be seen in these figures, implementation of the normalization

scheme described previously effectively reduced condition number, thus contributing to

improved solution accuracy.

The effect of normalization of the GSM, constraint representation, dimensionality,

and design variable allocation on computational requirements is summarized in Figures

8.2a-8.2c. Although Figures 8.2a and 8.2b demonstrate little change in solution time for

direct decomposition with normalization, Figure 8.2c shows significant reductions when

used with Gauss-Siedel iteration. For the limited dimensionality problems considered in

this work, these solution times were comparable to those required in a direct decomposition

approach. Due to roundoff error accumulation in a direct decomposition approach, the

iterative strategy is preferred. In the iterative framework of the design synthesis process, it

is possible to use the solution of the previous iteration as the initial choice for the current
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Condition Number CC - Constraint Case
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Figure 8.2c Computational time variation with constraint representation, normalization,
and dimensionality for iterative solution.
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iteration. Mixed resultswereobtained uponapplicationof sucha strategy,failing to

conclusivelyestablishanydistinctadvantagein computationalsavings.

Resultsfor theoutputresponsesensitivitieswereobtainedby directdecomposition

and iterative solution approaches,aswell as by a finite difference techniqueusingthe

coupledsystemequations. A comparison of these results in terms of the standard deviation

measure previously defined for various constraint and design variable cases are

summarized in Figures 8.3a-8.3e. Extremely good agreement between iterative and direct

decomposition solutions is shown with slightly improved agreement with the use of

normalization implementation. A comparison between direct decomposition and finite

difference solutions shows good agreement with increased deviations resulting from the

somewhat loose convergence criteria used in the solution of the coupled analysis equations

in the finite difference approach. Direct decomposition solutions for the two design

variable representation cases (Figure 8.3e) demonstrated reasonably good agreement

between the two representations, but did not conclusively establish the advantages of one

type of design variable representation over the other.

The sensitivity information obtained in the above analysis was also used in a

representative optimization application. Table 8.1 summarizes the initial and final designs

for this exercise. Results obtained for the 1 mode, finite difference solution and the 3

mode, GSE solution are presented. The number of design variables for the 1 mode

solution are less than the 3 mode solution due to the fewer gain components associated with

the former set. The results, obtained at the end of the sixth iteration, demonstrated similar

values for the design objective.

Concurrent Subspace Optimization Method

Since the CSSO is a newly proposed method, it is critical that optimization

solutions obtained by application of this approach are compared to more established method
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direct decomposition solutions for design variable case 1.
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Standard Deviation CC - Constraint Case
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Table8.1 Summary of optimization results for GSE application to the aircraft
synthesis problem.

DV

INITIAL
1 mode. FD solution

FINAL

3 mode, t3SE solution

1 64.00 77.1300 71.5629
2 64.00 73.9076 68.3836
3 44.50 45.5795 62.9380
4 217.0 166.129 133.937
5 1.500 0.57240 1.75480
6 123.5 108.545 108.175
7 0.400 0.23034 0.27464
8 0.400 0.17364 0.27381
9 0.300 0.15936 0.20981
10 0.300 0.14051 0.21033
11 0.200 0.15875 0.15450
12 0.200 0.11927 0.15462
13 0.200 0.15737 0.18509
14 0.200 0.15603 0.18503
15 0.050 0.02458 0.03286
16 0.050 0.02790 0.03262

17 0.050 0.03227 0.03745
18 0.050 0.01741 0.03198
19 0.050 0.01758 0.03205
20 0.050 0.02417 0.05509
21 0.040 0.01966 0.02981
22 0.040 0.02334 0.02988
23 0.030 0.03260 0.03104
24 0.030 0.02212 0.02902

25 0.020 0.02447 0.02900
26 0.020 0.02881 0.02513
27 0.100 0.11445 0.10003
28 0.100 0.11949 0.09965
29 0.100 0.10000
30 0.100 0.10132
31 0.100 0.07999
32 0.100 0.09999

OBJ 2033.37 Ibs 1909.43 lbs 1888.58 lbs
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solutions for verification purposes. To this end, various optimization solutions to the ten-

bar truss problem described previously are presented in Table 8.2. The four sets of results

presented correspond to optimization solutions where sensitivities were obtained by a f'mite

difference procedure and by the GSE method (Cases 1 and 2, respectively), and by

application of the CSSO method in both the traditional single processor and in a distributed

processing environment (Cases 3 and 4, respectively). The CSSO solutions correspond to

cases in'which reciprocal approximations were used in'conjunction with a variable move

limit scheme. As can be seen from Table 8.2, all three methods (Cases 1-3) show good

agreement, thus confirming the feasibility of the proposed CSSO method. Further, the

ability to effectively parallelize the CSSO implementation was demonstrated by comparison

of solutions corresponding to Case 4 with those obtained in Cases 1-3. Essentially the

same design was found in all cases, with the distributed results demonstrating the

versatility and potential computational efficiency of the CSSO method.

Figures 8.4a and 8.4b demonstrate that a reciprocal constraint approximation

scheme results in largely improved constraint violation characteristics compared to a linear

approximation scheme. The more accurate constraint approximations resulting from

application of the reciprocal scheme allowed for larger move limits in the piecewise-linear

approach at the subspace optimization level. Very little difference was obtained by

implementation of the improved approximation scheme.

The outcome of a study to determine the effects of bounding the t coefficients is

seen in Figures 8.5a and 8.5b, in which no upper bound and an upper bound of 1.0 was

enforced, respectively. Twenty percent move limits were permitted and a reciprocal

approximation scheme was used in both cases. It is obvious that the increase in the t

coefficient value in the first case contributed to a continually worsening oscillatory

convergence history. Applying an upper bound on the t coefficients resulted in a speedier

convergence, as little time was spent compensating for constraint approximation

inaccuracies occuring in prior cycles. Figure 8.5b also demonstrates the result of forcing
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Table 8.2 Comparison of initial and final optimization results for ten-bar truss model.

INITIAL FINAL

CASE 1 CASE2 CASE3 CASEd

Weight (lb) 5601.3 2116.0 2115.6 2120.6 2113.1

DV (in 2)

1 10.0 7.14 7.14 6.87 7.09

2 10.0 5.03 4.96 4.88 4.84

3 10.0 6.71 6.66 6.63 6.63

4 10.0 0.10 0.10 0.39 0.17

5 10.0 4.31 4.31 4.34 4.25

6 10.0 3.71 3.72 4.15 4.02

7 10.0 0.10 0.10 0.12 0.10

8 10.0 8.24 8.23 8.01 8.01

9 10.0 0.10 0.10 0.42 0.24

10 10.0 0.11 0.10 0.10 0.10

1 ! 300.0 371.2 373.7 351.0 366.2
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the r coefficientsto beactive in the final cyclesof the designprocess. The trade-off

capability of thet coefficientswas'turnedoff, resultingin a smoothconvergence.Figure

8.6showstheforcedconstraintsatisfactionachievedbysuchanimplementation.

Implementation of a variable move limit strategy based on the concept of

effectiveness coefficients demonstrated substantially improved convergence characteristics.

A comparison of the convergence history shown in Figure 8.5b with that resulting from an

implementation of the heuristics-based variable move limit strategy in Figure 8.7, shows a

marked improvement in objective function reduction after the fLrst cycle. An overall

reduction of twenty cycles was achieved by applying the move limit strategy, which

translates into significant computational savings.

Concurrent Subspace Optimization - Embedded Expert System Method

Table 8.3 demonstrates results corresponding to four approaches for the

control/structure interaction problem described in Chapter 6. Cases A and B correspond to

'all-in-one' optimization strategies in which the gradient information was obtained by the

Finite Difference (FD) and Global Sensitivity Equation (GSE) approaches, respectively.

Case C corresponds to the Concurrent Subspace Optimization method and Case D to the

CSSO with the embedded expert system capabilities discussed in the previous section.

Although final results are quite similar, there are definite differences between the results

corresponding to the FD, GSE, and CSSO approaches. This difference can be largely

attributed to the fact that the CSSO method makes extensive use of cumulative constraint

representations. These functions have the effect of creating a constraint envelope which is

slightly conservative, thus resulting in convergence to a slightly different final design. As

can be seen from Table 8.3, only a 4% difference in the objective function exists between

the CSSO and GSE method results.
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Table8.3 Comparisonof optimizationresultsfor CSIproblem.

INITIAL

FD GSE

Weight(lb) 848 410 427

DV (in 2)

1 2.0 1.8 2.0

2 2.0 .91 1.0

3 2.0 2.0 2.1

4 2.O .36 .39

5 2.0 .70 .82

6 2.0 1.3 1.1

7 2.0 .22 .20

8 2.0 1.4 1.3

9 2.0 .54 .65

10 2.O .25 .38

11 .05 .06 .04

FINAL

CSSO

447

2.0

.63

2.2

.60

1.3

.83

.47

.95

1.2

.44

.02

CSSO-EES

451

2.2

.95

2.3

.78

.76

1.1

.30

1.1

.59

.56

.01

Cycle 12 15 29 25
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The effect of reallocating the design variables after every five cycles was

investigatedfor casesin which a strictly algorithmicallocationscheme(CaseA) andthe

heuristics-basedallocationschemepreviouslydescribed(CaseB) wereused. Table 8.4

demonstratestheallocationof selecteddesignvariables(numbers1,5, 7, and8) after 5,

10,and 15cycles. Thedesignvariableswereallocatedto eithersubspace1(structures)or

subspace2 (controls). It is interestingto notethattheweightafterfive cycleswas476lb.

for CaseA and 460 lb. for Case B. Clearly, use of the heuristics-based design variable

allocation scheme provided better convergence rates.

The embedded expert system capability was used effectively to determine values for

parameters associated with the optimization code CONMIN. The capability both initialized

parameters associated with linearity of the problem, as well as dynamically changed

parameters for cases in which convergence was not achieved for the approximate

optimization problem. The initialization process resulted in slightly increased values for

'phi', 'theta', and 'ct' since constraint non-linearities existed.

The incorporation of an efficient move limit strategy in which the upper bounds

were heuristically varied resulted in a more efficient convergence scheme. As seen in Table

8.3, the CSSO method required 29 cycles to converge, whereas the CSSO-EES required

25. Figure 8.8 demonstrates the variation of the upper bound in the first 10 cycles, as well

as the move limits associated with two representative design variables (number 4 and 6).

As shown in the figure, the upper bound decreases as the design process progresses, with

correspondingly smaller move limits for all design variables. The figure also demonstrates

the versatility permitted by this scheme. Design variable 4 is initially permitted move limits

of up to +/- 60%. As the variable became more important in reducing the objective function

and satisfying the constraints, move limits were reduced to +/- 5%. The heuristics-based

move limit strategy thus effectively replaced the involvement of the designer in making

move limit choices.
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Move Limit %
8O

7O

6O

5O

3O

20

10

0

5

Cycle Number

10

Figure 8.8 Variation of upper bound and move limits for selected design variables.
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Table 8.4 Comparison of design variable allocations without (Case A) and with (Case
B) heuristics.

CYCI J:-

REALI£)CATION COMPARISON
DV1 DV5 DV7 DV8

Initial
A 1 2 2 1
B 1 1 2 1

After 5
A 1 1 1 1
B 1 1 2 1

After 10
A 2 2 2 1
B 1 1 2 1

After 15
A 1 1 2 1
B 1 1 1 2

WEIGHT AFTER 5 CYCLES

A 476 lb.
B 460 lb.

Without Heuristics
With Heuristics
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The replacement of the coordination optimization problem with a heuristics-based

coefficient assignment scheme was implemented. Table 8.5 shows the r and t coefficients

corresponding to cumulative constraint 1 (C1) for the first ten cycles of the optimization

process. At the initial cycle, no trade-off was permitted and the r coefficients were

activated. At the In'st cycle, however, the constraints were sufficiently over-satisfied to

permit a trade-off to occur. The trade-off continues until the 6th cycle, where the constraint

exceeded the prescribed allowable limit and was determined to be active. The r coefficients

were then active until such time as the constraint was satisfied for two consecutive cycles.



117

Table8.5 Coefficientandconstraintvaluesfor lust tenoptimizationcycles.

Cycle ACTIVE COEFFICIENTS

C1 Rll R12 Tll T12

0 -.20 .58 .42 -

1 -.13 - -.1 .1

2 -.06 - -. 1 .1

3 -.02 - -. 1 .1

4 -.01 - -.1 .1

5 -.006 - -. 1 .1

6 .009 .72 .28 - -

7 .007 .71 .29 - -

8 .003 .71 .29 - -

9 .004 .71 .29 - -

10 .0009 .09 .91 - -
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CHAPTER9
CONCLUDINGREMARKS

The recent thrust to improve quality of productsaswell asproductivity in the

United Stateshasled to therealizationthattraditionaldesignpracticesareinefficient and

outmoded. It is in thedesignphasethatthemostpotentialexiststo takeadvantageof the

synergismof the inherentlycoupleddisciplinesto increasetheoverallqualityof theproduct

aswell asto reducethetimeandeffort requiredfor developmentanddesignof theproduct.

The multidisciplinary interactionsexisting in large scaleengineeringdesignproblems

providea uniquesetof difficulties associatedwith unwieldynumbersof designvariables

and constraints. Suchobstaclesrequiredesigntechniqueswhich takeadvantageof the

extensivecouplings of the disciplines in the analysesandoptimizations,producingan

efficientmethodologytoperformmultidisciplinarysynthesis.

The goalof the presenteffort was to developa designcapability appropriatefor

largeengineeringsystemsin whichadistinctsystemhierarchyisdifficult to identify. The

conceptof decouplinglargecomplexproblemsinto smaller,moretractablesubsystemswas

investigated using system decomposition techniques. Three approachesto system

decompositionwereinvestigatedfor this purpose:theGlobalSensitivityEquation(GSE)

Method, the ConcurrentSubspaceOptimization (CSSO) Method, and the Concurrent

SubspaceOptimization - EmbeddedExpert System(CSSO-EES)Method. All three

methodspermit theconcurrentconsiderationof thedesigncriteria within all disciplines,

thusprovidinganenvironmentparticularlyamenableto parallelprocessing.

The GSE Method providesa meansfor decomposingthe systeminto smaller

subsystemsthat canbeanalyzedindependently.Sensitivityinformationobtainedby this

approachis thenusedin an 'all-in-one'optimization,performedwithin theframeworkof a
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sequential linearization strategy. The applicability of the GSE method in the

multidisciplinary synthesis of aeronautical vehicles was investigated. A hypothetical

aircraft in the class of the Cessna 170-type configuration was chosen as the test

environment for the investigation, with the disciplines of structures, aerodynamics, and

flight mechanics contributing to the objective function and constraints for the problem.

Potential drawbacks in the use of the GSE approach Were identified as arising from a large

number of design variables and constraints and from an improper choice of design

variables. Approximation methods were applied in order to reduce problem dimensionality

and to improve the efficiency of the optimization process. The influence of constraint

representations and the choice of design variables was shown to be a primary concern.

Further, it was demonstrated that normalization of the system matrix is essential to avoid

problems associated with ill-conditioning. Numerical results demonstrated the applicability

of the GSE approach for large, coupled design synthesis problems.

The CSSO Method is basically an extension of the concept upon which the GSE is

based. Not only are the analyses performed in separate subsystems, as in the GSE, but the

optimizations are decoupled as well, and executed within separate subspaces concurrently.

Unlike the conventional method of subspace optimizations, however, the CSSO eliminates

the need for a full analysis in each subspace. Coordination amongst subspaces is achieved

through the use of coordination coefficients which determine the responsibilities assigned

to each subspace for satisfying a given constraint. Each cycle of the approach results in

either a reduction of the system constraint violation or an improvement of the system

objective function if the constraints are already satisfied. The temporarily decoupled

optimization and analysis problems are eminently appropriate for a design organization

setting in which groups of specialists are associated with disciplines and physical

subsystems. Potential drawbacks were identified pertaining to the linearizations required

throughout the CSSO. The synthesis problem investigated for method verification

involved the optimal design of a ten-bar truss for minimum weight subject to stress and
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displacementconstraints.Subspacesweredefinedin termsof sizingandspacevariables.

Results demonstrated the necessity for limiting movement of the coordination variables to

achieve a smooth convergence. Further, the importance of imposing an appropriate

approximation scheme was demonstrated. The applicability of a variable move limit

strategy was shown to be of extreme computational worth. A verification study of the

move limit strategy demonstrated the computational savings that can be obtained in the

optimization process by pemaitting design variables to 'move' according to their impact on

the design. Results of the CSSO verification study demonstrated that the approach was a

versatile method which potentially offers exceptional data management advantages. The

method allows for the use of specialized methods for analysis and optimization due to its

modularity and is particularly suitable for the incorporation of human intervention and

decision-making.

The heuristic variant of the CSSO, the CSSO-EES, takes advantage of problem-

dependent heuristics and user expertise in the form of an embedded expert system

capability to achieve improved convergence characteristics and greater versatility. The

method makes use of heuristics in allocating the design variables to the most appropriate

subspace, ensuring convergence within each approximate optimization problem, improving

on the variable move limit strategy, and replacing the optimum sensitivity analysis and

coordination optimization problem with the embedded expert system capability. The

synthesis problem chosen for the demonstration involved the optimal design of a

controls/structure interaction model for minimum weight based on active control and

structural integrity requirements. Results demonstrated that improved efficiency as well as

versatility can be obtained with the incorporation of an expert system capability.

Although the methods investigated proved applicable for the optimal design of large

engineering systems, substantial room for improvement exists. The concept of

multidisciplinary design optimization has gained prominent recognition in the engineering

community in the last ten years. The importance of developing methodologies appropriate
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for non-hierarchic environments has been emphasized as a key function of future design

techniques. Such techniques require a necessary organizational as well as technical

modification in order to achieve their full potential. The design process itself has

undergone a major change, as the concept of incorporating all the design criteria in a

simultaneous treatment has emerged as not only desirable, but necessary. Recent initiatives

have focused on consideration of manufacturability and supportability as well as

performance objectives in a 'Concurrent Engineering' (CE) approach. An investigation of

the applicability of the CSSO and CSSO,EES in a CE problem is an obvious next step, as

both methods allow for the use of specialized methods for analysis and optimization.
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APPENDIXA
MOVELIMIT STRATEGYVERIFICATION

Variable Move Limit Strategy

The move limit strategy defined in Chapter 7 is used to determine the move limits

associated with each design variable as a result of their impact on the design. Side

constraints are formulated for each design variable in terms of the move limits as,

(100- mli),Xi _X i _ (100+ mli),Xi
100 100 (A1)

This formulation defines upper and lower bounds associated with a prescribed percentage

of movement about the design variables.

Method Implementation

The feasibility of the variable move limit strategy was investigated by means of a

verification procedure. The method was applied in truss design problems with varying

degrees of complexity and size. The design objectives and application models used in the

verification procedure are described in the following sections.

Desi_ Objectives

The objective of the design problem for all cases was to minimize the weight of the

structure while maintaining limitations on member stresses and nodal displacements. The

design variables were the cross-sectional member areas. The structural analysis was
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performed using the finite elementcode EAL. The constrainedminimization code,

CONMIN, basedon themethodof usable-feasibledirections,wasusedastheoptimizer.

Application Models

Three test cases were investigated to demonstrate the feasibility of the move limit

strategy in design optimization. Case 1 involved the optimal design of a ten-bar truss

subject to static loading, as shown in Figure AI. Two initial designs were considered (la

and lb), corresponding to initially infeasible and initially feasible points. Case 2 extended

the implementation to a twenty-five-bar truss with the loadings shown in Figure A2. The

final case involved the design of a two hundred-bar truss (Figure A3) with a 1000 lb.

loading applied in the positive x direction at nodes 1,6,15, .... 71. The allowable stress and

displacement values for each case, as well as material property information are shown in

Table A 1.

Table A 1 Material properties and allowable limits for move limit strategy verification
applications.

Case E(psi) p(Ibs/in 3) aal(psi) dal(in)

1 10E6 0.100 +/- 25E3 +/- 2.0

2 10E6 0.100 +/- 25E3 +/- 2.0

3 30E6 0.283 +/- 10E3 +/- 0.5

Discussion of Results

Implementation of the variable move limit strategy in three test cases demonstrated

significantly improved convergence characteristics. A discussion of results obtained for

each test case is presented.
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Figure A1 Case 1 model- 10 bar truss.
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Figure A2 Case 2 model - 25 bar truss.
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Figure A3 Case 3 model - 200 bar truss.



Case 1: Ten bar Truss
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Two applications were investigated in this case, corresponding to initially infeasible (Case

la) and initially feasible (Case lb) design points. Figure A4 demonstrates the distribution

of effectiveness coefficient values for Case la, in which the mean value of the effectiveness

space and the lower and upper bounds are also shown. The convergence histories for the

objective function and for a representative design variable are shown in Figures A5 and A6.

Design variable 4 (DV 4) corresponds to the cross-sectional area of truss member 4 (Figure

3) and has a minimum gage value at the optimum. Figure A5 demonstrates the

unacceptably large number of cycles required for DV 4 to approach the gage value, due to

restrictive move limitations. The implementation of the move limit strategy permits the

achievement of this value in only 8 cycles as opposed to the 32 cycles required without.

Figure A7 demonstrates the move limit history for selected design variables over the ten

cycles required for convergence. It can be seen from this figure that DV 4 consistently has

move limits of 40% or greater throughout the optimization process, thus permitting a rapid

convergence to the gage value.

A comparison of convergence histories for objective function and DV 4 is shown in

Figure A8 for Case lb. The first four cycles of the optimization process are shown to

demonstrate the substantial improvement that is obtained in the first cycles by

implementation of the move limit strategy. The objective function value was reduced by

more than 36% with the addition of the move limit strategy as opposed to only 30% when it

was not used. The change in DV 4 was most dramatic, however, with a 95% reduction in

value as opposed to a 76% reduction.
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Figure A4 Effectiveness space for Case la initial point.
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Figure A5 Case la convergence histories with no move limit strategy.
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Figure A6 Case la convergence histories with move limit strategy.
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Figure A7 Move limit histories for Case la.
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Figure A8 Comparison of Case l b convergence histories with and without move limit
strategy.



Case 2: Twentv-five bar Truss
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The convergence histories for the objective function and for design variable 10 for Case 2

are shown in Figures A9 and A10. As with DV 4 in the ten-bar truss problem, DV 10 has

a minimum gage value at the optimum. As with Case 1, an unacceptably large number of

cycles are again required for DV 10 to approach the gage value, due to the restrictive move

limitations applied in the design process when no efficient move limit strategy exists

(Figure A9). The implementation of the move limit strategy allows DV 10 to reach gage

value in only 12 cycles as opposed to more than 40 cycles required with no move limit

strategy.

Figures A9 and A 10 demonstrate that a 59% difference exists in the computational

requirements for the two cases, with the move limit strategy case requiting only 17 cycles

for convergence and the other requiring more than 42. As with Case 1, it was

demonstrated that implementation of the move limit strategy results in greatly improved

convergence characteristics, which translates into computational savings.

Case 3: Two-hundred bar Truss

Application of the move limit strategy in the minimization of weight for the two hundred

bar truss example was made for one cycle to demonstrate the savings that can potentially be

obtained in such a large problem. The objective function values for the initial and f'trst

cycle are shown in Table A2.

Table A2 Initial and first cycle results for two-hundred bar truss.

Cycle Weight (lb)

no ml stratetw with ml strate_v
--v

0 149451 149451

1 119585 80107
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Figure A9 Case 2 convergence histories with no move limit strategy..
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Figure A10 Case 2 convergence histories with move limit strategy.
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A 46% improvement is made in objective function value with the move limit strategy as

opposed to only a 20% improvement without, with no constraint violations in either case.

Concluding Remarks for Move Limit Strate_ Verification

The applications of a variable move limit strategy in the optimal design process

were demonstrated. The strategy is based on effectiveness coefficients which quantify a

design variable's impact on the design criteria. Results for three test cases of varying size

and complexity demonstrate substantial reductions in computational effort, which translates

into increased efficiency. It has been shown that the ability exists to take the guesswork

out of move limit value assignment.
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APPENDIX B
KNOWLEDGE BASE FOR CONCURRENT SUBSPACE OtrI'IMIZATION -

EMBEDDED EXPERT SYSTEM METHOD

Desi_ Variable Allocation

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

DVRL.CLP

DESIGN VARIABLE ALLOCATION RULE SET

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

, ALLOCATION RULE

9

, Determines total design variables allocated. If number design variables allocated
, is less than total number design variables, then allocation is unclear.

;(defrule allocation
(ndv__strucmres_allocated
(ndv__controls_allocated
(ndv_total

=>

(bind ?ndv..allocatc(+

(if (< ?ndv_allocatc

then (assert(allocation

?ndvsall)
?ndvcall)
?ndvto0

?ndvsall

?ndvtot)
unclear))))

?ndvcaU))

;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

(defrule structm'es__ndv_size
(allocation
(ndv_structures_allocated
(ndv_total

=>

STRUCIZIRES_NDV_SIZE RULE

Determines whether number design variables allocated to structures is large
or not large.

unclear)
?ndvsall)
?ndvtot)

(bind ?newtotai (* .6 ?ndvtot))
(if (< ?ndvsall ?newtotal)
then (assert (ndv_structures not_large))
else (assert (ndv_structures large))))
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;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

(defrule controls ndv_size
(allocation
(ndv_control s_allocated
(ndv_total

CONTROLS_NDV_SIZE RULE

=>

Determines whether number design variables allocated to controls is large

or not large.

(bind
(if
then
else

unclear)
?ndvcall)
?ndvtot)

?newtotal (* .6 ?ndvto0)
(< ?ndvcall ?newtotal)

(assert (ndv_controls not_large))
(assert (ndv_controls large))))

;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

ALLOCATE_SIZING RULE

Allocates sizing variable to either structures or controls based on numbers of
design variables already allocated as well as traditional considerations.

,p

(defmle allocate_sizing
(allocation
(dv
(ndv_structures

-->

(if (eq
then (bind
else (bind
(KBANS 1

unclear)

sizing)
?ndvs)

?ndvs large)
?alldv controls)
?alldv structures))
ALLOCATE ?alldv 0 0))

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

; ALLDCATE_DAMPING RULE

; Allocates damping variable to either structures or controls based on numbers of

; design variables already allocated as well as traditional considerations.

(defrule

=>

allocate_damping
(allocation unclear)

(dv damping)
(ndv_controls ?ndvc)

(if (eq ?ndvc large)
then (bind ?alldv structures)
else (bind ?alldv controls))
(KBANS 1 ALLOCATE ?alldv 0 o))
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Variable Move Limit Strate_,v

;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

; ML.CLP

; RULE SET FOR VARIABLE MOVE LIMIT DETERMINATION

;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

; CONSTRAINT RULE

; Determines whether constraint is active, not-active, or violated.

(defrule constrainLsatisfaction

(constraint ?g)
(constrainLthickness ?cO

=>

(bind
(if
then
else

?ctneg (- 0.0 ?cO)
(< ?g ?ctneg)
(assert (satisfaction not_active))
(if (< ?g ?cO
then (assert(satisfaction active))

else (assert(satisfactionviolated)))))

;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

; INITIALIZE RULE

; If first cycle, set upper bound for move limits.

(defrule initial

(cycle ?cyc)

(upper bound ?ub)
-->

(if (= ?cyc o)
then (K.BANS 1 UPPER null ?ub 0)))

;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

; ACTIVE RULE

; If cycle greater than zero and constraint is active, detemaine upper bound based
; on whether constraint is positive or negative•

(defrule activeconstraint
(satisfaction ?active)

(cycle ?cyc)
(constraint ?g)
(upper_bound ?ub)

=>
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(if (> ?eye 0)
then (if (< ?g 0.0)

then (bind ?newub ?ub)
else (bind ?newub (*
(KBANS1 UPPER null

0.9 ?ub)))
?newub 0)))

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

NOT_ACTIVE RULE

If cycle greater than zero and constraint not active then determine upper bound

based on how close to allowable upper limit prefious cycle was.

defrule not_active_constraint
(satisfaction not_active)

(cycle ?cyc)
(upper_bound ?ub)
(upper_max ?ubm)

_.>

(if (> ?cyc 0)
then (bind ?ubmax (* 0.83333 ?ubm))

(if (< ?ub ?ubmax)
then (bind ?newub (* 1.2 ?ub))
else (bind ?newub ?ubm))
(KBANS 1 UPPER null ?newub 0)))

;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

; VIOLATED RULE

; If cycle greater than zero and constraint is violated, then decreased upper
; bound by 70%.

(defrule violated_constraint
(satisfaction
(cycle

(upper_bound
-->

violated)

?cyc)
?ub)

(bind ?newub (* 0.7
(KBANS 1 UPPER null

?ub))
?newub 0))
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Optimization Parameter Determination

;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

1

; OPRL.CLP

; OIrITMIZATION PARAMETER RULE SET FOR PREMATURE
; CONVERGENCE

I

;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

; STATUS RULE

; Determines whether terminationdue tosatisfactionof convergence criteriaor

; not.

(defrule status
(declare

?nl <- (fire
(iter
(itmax

=>

(salience
])
?i0
?inn)

5O0))

;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

; FEASIBLE SOLUTION RULE

; If temaination premature and solution at final iteration is feasible, increases

; allowable number of iterations until upper bound is exceeded.

(defrule solution_feasible
(declare (salience

(iter_status equal)
(solution feasible)

?nl <- (itmax ?inn)

=>

(itmax_bound ?itmbound)
?n2 <- (f'me 2)

(retract ?n2)
(bind ?newitmax (*
(if (<= ?newitmax
then (retract ?nl)

(assert

clsc (assert

300))

2. ?inn))
?itmbound)

(itmax ?newitmax)
(itmax_bound_is exceeded))))

(retract ?nl)
(if (= ?it ?inn)

then (assert iter_status equal))
else (assert iter__status not_equal))))
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;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

; INFEASIBLE SOLUTION1RULE

; If terminationpremature,solutionat final iterationis infeasible,andphi has
; notyet been adjusted, increases value of phi.

(defrule solution_not_feasible 1

=>

(declare (salience
(iter_status equal)
(solution noLfeasible)

?nl <- (phi ?ph)

(phi_init ?phin)
?n2 <- (fire 3)

300))

(retract ?n2)

(if ( = ?ph ?phin)
then (bind ?newphi (* 3.

(retract ?nl)
(assert (phi ?newphi))))

?ph))

=>

(retract

(if (>
then (bind

(bind
(if
then

300))

?n3)

?ph ?phin)
?ncwphi (+ ?phincrem ?ph))
?itmnew (* ?2. ?itrn))

(<= ?ncwphi ?phbound)
(if (<= ?itrrmcw ?itbound)
then (retract ?nl ?n2)

(assert (phi ?newphi)
(assert (itmax ?itmnew))))))

(defrule solution_noLfeasible_2a
(declare (salience

(iter_status equal)
(solution noLfeasible)

?nl <- (phi ?ph)
(phi_init ?phin)
(phi_bound ?phbound)
(phi_increment ?phincrem)

?n2 <- (itmax ?itm)
(itmax_bound ?itbound)

?n3 <- (fLrC 4)

;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

1

; INFEASIBLE SOLUTION 2A RULE

9

; If termination premature, solution at final iteration is infeasible, and phi has

; already been adjusted, increase value of phi as long as bound not exceeded.



142

;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

; INFEASIBLE SOLUTION 2B RULE

11

; If termination premature, solution at final iteration is infeasible, phi has
; already been adjusted, and value of phi bound has been exceeded, assert such
; into fact-list.

(defrule solution_not_fcasible_2b
(declare (salience

(iter_status equal)
(solution not_feasible)

(phi ?ph)
(phi_init ?phin)
(phi_bound ?phbound)

(phi_increment ?phincrem)
?nl <- (fire 5)

=>

(retract

(if (>
then (bind

(bind
(if
then

300))

?nl)

?ph ?phin)
?newphi (+ ?phincrem ?ph))
?itmnew (* 2. ?itm))
(> ?newphi ?phbound)
(assert (phi_bound_is_exceeded)))))

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

, INFEASIBLE SOLUTION 2C RULE

, If termination premature, solution at f'mal iteration is infeasible, phi has
, already been adjusted, and value of itmax bound has been exceeded, assert

such into fact-list.

(defrule solution_not_feasible_2b

(declare (salience
(iter_status equal)
(solution not_feasible)

?nl <- (phi ?ph)
(phi_init ?phin)

?n2 <- (itmax ?itm)
(itmax_bound ?itbound)

?n3 <- (fire 6)
=>

(retract

(if (>
then (bind

(if
then

3OO))

?n3)
?ph ?phin)

?itmnew (* 2. ?itm))
(> ?itmnew ?itbound)
(assert (itmax_bound_is._exceeded)))))
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;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

; ITMAX EXCEEDED RULE

(defrule itmax exceeded
(declare
(itmax_bound._is

?nl <- (delfun
(delfun_inerement

?n2 <- (dabfun__variable
(dab fun_increment

?n3 <- (itrm
(new_itrm

?n4 <- (them
?n5 <- (ct

(ct_.increment
(solution

(delfun_bound
(dabvar_bound
(them_bound

(or_bound
?n6 <- (fire 7)

=>

If itmax bound is exceeded and solution feasible, adjust convergence parameters.

If solution infeasible, adjust parameters associated with constraint satisfaction.
If parameter bounds exceeded, assert 'process stop' into fact-list.

(retract

(if (eq
then (bind

(bind
(if
then

else

else

(salience
exceeded)
?dell%
?delfmcrem)
?dabvar)
?dabincrem)
?itr)
?newitrm)
?them)
?cw)
?ctincrem)
?sol)

?delbound)
?dabbound)
?thetabound)
?abound)

100))

?n6)

?sol feasible)
?newdelfun (+ ?deft ?delfmcrem))
?newdabvar (+ ?dabvar ?dabincrem))
(<= ?newdelfun ?delbound)
(retract ?nl ?n2)
(assert (delfun ?newdelfun))
(assert (dabfun_variable ?newdabvar)))
(if (> ?itr ?newitrm)

then (retract ?n3)
(assert (itrm ?newitrm))
(assert (process stop))))

else (bind ?newthet (*
(bind ?newct (-
(if (<= ?newthet
then (if (>= ?newct

then (retract
(assert
(assert

else (assert (process

2. ?thet))
?ctv ?ctincrem))
?thetabound)

?ctbound)
?n4 ?n5)
(them ?newthet))
(ct ?newct)))

stop)))))
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;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

; PHI EXCEEDEDRULE

; If phi boundexceededandsolutioninfeasible,adjustparametersassociated
; with constraintsatisfaction.If parameterboundsexceeded,assert'process
; stop' into fact-list.

(defrule phi_exceeded
(declare (salience

(phi_bound_is exceeded)
?nl <- (them ?the0
?n2 <- (ct ?ctv)

(ct_increment ?cfincrem)
(solution ?sol)
(theta_bound ?thetabound)
(cLbount ?ctbound)

?n3 <- (fh'e 8)
=>

100))

(retract

(if
then

(eq
(bind
(bind

(if
then

?n3)
?sol not__feasible)
?newthet (*
?newct (-
(< ?newthet
(if (< ?newct

then (retract
(assert
(assert

else (assert

2. ?thet))
?ctv ?ctincrem))
?thctabound)

?ctbound)
?nl ?n2)

(them ?newthet))
(ct ?newct)))

(process stop)))))

;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

; PRINT RULE

; Subroutine KBANS1 used to update new parameter values.

(defrule parameters_out
(declare (salience 10))

(iter_status equal)
?nl <- (itmax ?itm)

(phi ?ph)
(delfun ?dell)
(dabfun._variable ?dabvar)
(itrm ?i_')
(them ?the)
(ct ?ctv)

=>

(retract ?nl)
(KBANS 1 1TMAX ITRM ?itm
(KB ANS 1 DELFUN DABVAR ?delf

(KBANS 1 PHI THETA ?ph
(KBANS 1 CT null ?ctv

?itr)
?dabvar)
?the)

0))
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;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Y

; PRINT STOP RULE

; If 'process stop' asserted into fact-list at any time, K.BANS 1 used to relay
; information to main routine.

(defrule process_stop
(declare

?nl <- (process
=>

(retract
(KBANS 1 STOP

?nl)

(salience 10))
stop)

nun o o))
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Coordination Coefficient Assi_ment

;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

; COEFRL.CLP

; COEFFICIENT ASSIGNMENT RULE SET

;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

; INrrlALIZE RULE

; ff first cycle, set switch parameters.

(defrule initial

(declare (salience 500))
(cycle ?cyc)

?nl <- (fire 1)
=>

else

(retract
(if
then

?nl)

(= ?cyc 0)
(assert (process stop))
(bind ?sl 1)
(bind ?s2 1)
(KBANS1 INS1 INS2 ?sl

(assert (process no_stop))))
?s2)

=>

(defrule constraint 1a_sailsfaction
(declare (salience

(process no_stop)
?nl <- (gl_present ?gl)
?n2 <- (gl_past ?glold)

(constraint_thickness ?cO

(bind ?cmeg (- 0.0
(if (>= ?gl ?cmeg)
then (bind ?s 1 1)

(retract ?nl)
(KBANS 1 S 1

else (if (>= ?glold
then (bind ?sl

(KBANS 1
(retract

30O))

?ct))

null ?s 1 0)

?ctneg)
1)
S 1 null ?s 1

?n2))))

o)

;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

; CONSTRAINT1A RULE

; Determines constraint satisfaction for present and previous cycles.
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;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

; CONSTRAINT2ARULE
1

; Determines constraint satisfaction for present and previous cycles.

(defrule constraint2a_satisfaction
(declare (salience

(process no_stop)
?nl <- (g2_present ?g2)
?n2 <- (g2 past ?g2old)

.->

(constraint_thickness ?ct)

(bind ?cmeg (- 0.0 ?cO)
(if (>= ?g2 ?cmeg)
then (bind ?s2 1)

(retract ?nl)
(KBANS 1 $2 null

else (if (>= ?g2old
then (bind ?sl 1)

10o))

?s2 0)

?ctneg)

=>

(bind ?cmeg (- 0.0 ?ct))
(if (< ?gl ?ctneg)
then (if (< ?glold

then (bind %1 0)
(assert (statusl
(KBANS 1 S 1
(retract ?nl))))

300))

?ctneg)

trade-off))
null ?sl 0)

(defrule constraint 1b_satisfaction

(declare (salience
(process no_stop)

(g l_present ?g 1)
(gl_past ?glold)
(constraint_thickness ?cO

?nl <- (fu'e 2)

(KBANS 1 S2 null ?s2 0)
(retract ?n2))))

;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

; CONSTRAINT1B RULE

; Determines constraint satisfaction for present and previous cycles.
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;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

; CONSTRAINT2BRULE

; Determinesconstraintsatisfactionfor presentandpreviouscycles.

(defruleconstraint2b_satisfaction
(declare (salience
(process no_stop)
(g2_present ?g2)
(g2_past ?g2old)
(constraint_thickness?cO

?nl <- (fire 3)
=>

(bind
(if
then

?ctneg (- 0.0 ?cO)
(< ?g2 ?cmeg)
(if (< ?g2old
then (bind ?s2 0)

(assert (statusl
(KBANS 1 $2

(retract ?nl))))

100))

?ctneg)

trade-off))
null ?s2 0)

?nl <-

=>

(retract
(if (>
then (if

then

else

else (if
then

else

(KBANS 1

(declare (salience
(process no_stop)
(statusl trade-off)
(g l_present ?gl)
(gl_past ?glold)
(obj_gradient 1 ?dwdx 1)
(obj__gradient2 ?dwdx2)

?nl)
?dwdxl dwdx2)

(> ?gl ?glold)
(bind ?tll -.1)
(bind ?t12 .1)
(bind ?tl 1 -.2)
(bind ?t12 .2))

(? ?gl ?glold)
(bind ?tl 1 .1)
(bind ?t12 -.1)
(bind ?tll .2)
(bind ?t12 -.2)))

T11 T12 ?tl 1 ?t12))

10))

(defrule trade 1

;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

; TRADE-OFF 1 RULE

; Determines t coefficient values.
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;CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

; TRADE-OFF2 RULE

; Determines t coefficient values.

(defrule trade2
(declare (salience
(process no_stop)

?nl <- (status2 trade-off)

(g_.present ?g2)
(g2_past ?g2old)
(obj_gradient 1 ?dwdx 1)
(obj_gradient2 ?dwdx2)

(retract ?nl)
(if (> ?dwdxl dwdx2)
then (if (> ?g2 ?g2old)

then (bind ?t21 -. 1)
(bind ?t22 .1)

else (bind ?t21 -.2)
(bind ?t22 .2))

else (if (? ?g2 ?g2old)
then (bind ?t21 .1)

(bind ?t22 -.1)
else (bind ?t21 .2)

(bind ?t22 -.2)))
(KBANS 1 T21 T22 ?t21 ?t22))

=>

10))
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